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Understanding and Combating Memory Bloat in Managed
Data-Intensive Systems
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The past decade has witnessed increasing demands on data-driven business intelligence that led to the pro-
liferation of data-intensive applications. A managed object-oriented programming language such as Java is
often the developer’s choice for implementing such applications, due to its quick development cycle and rich
suite of libraries and frameworks. While the use of such languages makes programming easier, their auto-
mated memory management comes at a cost. When the managed runtime meets large volumes of input data,
memory bloat is significantly magnified and becomes a scalability-prohibiting bottleneck.

This article first studies, analytically and empirically, the impact of bloat on the performance and scalability
of large-scale, real-world data-intensive systems. To combat bloat, we design a novel compiler framework,
called Facade, that can generate highly efficient data manipulation code by automatically transforming the
data path of an existing data-intensive application. The key treatment is that in the generated code, the num-
ber of runtime heap objects created for data classes in each thread is (almost) statically bounded, leading
to significantly reduced memory management cost and improved scalability. We have implemented Facade
and used it to transform seven common applications on three real-world, already well-optimized data pro-
cessing frameworks: GraphChi, Hyracks, and GPS. Our experimental results are very positive: the generated
programs have (1) achieved a 3% to 48% execution time reduction and an up to 88× GC time reduction,
(2) consumed up to 50% less memory, and (3) scaled to much larger datasets.
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1 INTRODUCTION

Modern computing has entered the era of “Big Data.” Developing systems that can scale to massive
amounts of data is a key challenge faced by both researchers and practitioners. The mainstream
approach to scalability is to enable distributed processing. As a result, existing platforms utilize
large numbers of machines in clusters or in the cloud; data are partitioned among machines so
that many processors can work simultaneously on a processing task. Typical parallel frameworks
include, to name a few, FlumeJava (Chambers et al. 2010), Giraph (Apache 2014b), GPS (Salihoglu
and Widom 2013), Hive (Thusoo et al. 2010), Hadoop (Apache 2014c), Hyracks (Borkar et al. 2011),
Spark (Zaharia et al. 2010), Storm (Twitter 2014), Flink (Apache 2014a), and Pig (Olston et al. 2008b).

All of these data-intensive systems are written in managed languages such as Java, C#, or Scala,
which are known for their simple usage, easy memory management, and abundant library suites
and community support. While these languages simplify development effort, their managed run-
time has a high cost—often referred to as runtime bloat (Mitchell et al. 2006; Mitchell and Sevitsky
2007; Xu et al. 2009, 2010a, 2010b; Xu and Rountev 2010; Xu et al. 2012; Xu 2012, 2013a; Nguyen
and Xu 2013; Xu et al. 2014; Yan et al. 2012)—which cannot be amortized by increasing the number
of data processing machines in a cluster. Poor performance on each node reduces the scalability
of the entire cluster: a large number of machines are needed to process a small dataset, resulting
in excessive use of resources and increased communication overhead. This article explores a new
direction to scale data-intensive systems, that is, how to effectively optimize the managed runtime
of a data processing system to improve its memory and execution efficiency on each node.

1.1 Motivation

Memory bloat in data-intensive applications stems primarily from a combination of inefficient
memory usage inherent to the managed runtime as well as huge volumes of input data that need
to be represented and processed in memory. As a result, data processing systems written in man-
aged languages frequently face severe memory problems that cause them to fail. For example, in
Spark (Zaharia et al. 2010, 2012), even machines with reasonably large memory resources cannot
satisfy its need, and out-of-memory errors have been constantly reported on StackOverflow (Stack-
Overflow 2015n) and the Apache mailing list (List 2014). Similarly, numerous examples of Hadoop
users facing out-of-memory errors can also be found on StackOverflow (e.g., StackOverflow (2015h,
2015d, 2015k, 2015f, 2015i, 2015j, 2015m, 2015e, 2015c, 2015b), CMU (2015), and StackOverflow
(2015a, 2015g, 2015l)). Finally, graph processing systems like Giraph (Apache 2014b) cannot pro-
cess moderate-sized graphs on large clusters, although the amount of data for each machine is well
below its memory capacity (Bu et al. 2013).

Memory inefficiency inherent to managed runtime is a real problem that has seriously concerned
developers of data-intensive systems. Debates on whether systems development should go back
and use C/C++ can be found almost everywhere (StackExchange 2015; Quora 2015; Cplusplus
2015). While forsaking managed languages and switching back to C/C++ appears to be a reasonable
choice, unmanaged languages are more error prone; debugging memory bugs in an unmanaged
language is known to be a notoriously painful task, which can be further exacerbated by the many
“Big Data” effects, such as distributed execution environment, huge volumes of heap objects, and
extremely long running time. Furthermore, since most existing data processing frameworks were
already developed in a managed language (e.g., Java, C#, or Scala), it is unrealistic to reimplement
them from scratch. Mozilla developed the Rust language (Mozilla 2014) for systems programming
that eliminates garbage collection and enforces ownership propagation through new syntax and
type system to prevent data races. However, developers are often resistant to new languages and it
is unclear how much extra development is needed to write a Rust program compared to a similar
Java program.
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Due to the increasing popularity of object-oriented data-intensive applications in modern com-
puting, it is important to understand why these applications are so vulnerable, how they are af-
fected by runtime bloat, and what changes should be made to the runtime system design to make
applications more scalable.

1.2 Contribution 1: A Real-World Case Study

We first describe a study of memory bloat using two real-world data processing systems:
Hive (Apache 2014d) and Giraph (Apache 2014b), where Hive is a large-scale data warehouse soft-
ware (Apache top-level project, powering Facebook’s data analytics) built on top of Hadoop and
Giraph is an Apache open-source graph analytics framework initiated by Yahoo!. Our study shows
that freely creating objects (as encouraged by object orientation), regardless of their different behaviors
during execution, is the root cause of the performance bottleneck that prevents these applications from
scaling up to large datasets.

To gain a deep understanding of the bottleneck and how to effectively optimize it away, we
break down the problem of excessive object creation into two different aspects: (1) what is the
space overhead if data items are represented by Java objects? and (2) given these Java objects,
what is the memory management (i.e., GC) cost in a typical data-intensive application? These two
questions are related to the spatial and the temporal impact of object creation on performance and
scalability, respectively.

On the spatial side, each Java object has a fixed-size header space to store its type and the in-
formation necessary for garbage collection. What constitutes the space overhead is not just object
headers; the other major component is from the pervasive use of object-oriented data structures
that commonly have multiple layers of delegations. Such delegation patterns, while simplifying
development tasks, can easily lead to wasteful memory space that stores pointers to form data
structures, rather than the actual data needed for the forward execution. Based on a study re-
ported in Mitchell and Sevitsky (2007), the fraction of the actual data in an IBM application is only
13% of the total used space. This impact can be significantly magnified in a data-intensive appli-
cation that contains a huge number of small-sized data item objects. Since the data contents (e.g.,
a key and a value) in each such object do not take up much space, the space overhead incurred
by headers and pointers cannot be easily amortized. This problem becomes increasingly painful
when the amount of input data is too large to fit into memory: data processing must be divided
into multiple rounds of loading, computation, and storing; with such a large space overhead, each
round can only load and process a very small amount of data, resulting in significantly increased
I/O costs.

On the temporal side, a typical tracing garbage collector (GC) periodically traverses the live ob-
ject graph to identify and reclaim unreachable objects. For non-allocation-intensive applications,
efficient algorithms such as a generational GC can quickly mark reachable objects and reclaim
memory from dead objects, causing only negligible interruptions from the main execution threads.
However, once the heap grows (e.g., dozens or even hundreds of GBs) and most objects in the heap
are live, a single GC run can become exceedingly long. In addition, because the amount of used
memory in a data-intensive application is often close to the heap size, the GC can be frequently
triggered and become the major bottleneck that prevents the main threads from making satisfac-
tory progress (e.g., the GC time accounts for up to 50% of the overall execution time). Details of
the study will be discussed in Section 2.

1.3 Contribution 2: The Facade System

The key observation made in the study is that to develop a scalable system, the number of data
objects and their references in the heap must not grow proportionally with the cardinality of the
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dataset. To achieve this goal, we develop Facade, a compiler and runtime system, that aims to
statically bound the number of heap objects during the execution of a data-intensive application,
thereby significantly reducing the space and temporal overhead incurred by the object-based data
representation. There are three major challenges in Facade’s design. We briefly discuss these chal-
lenges and how Facade overcomes them.

Challenge 1: How to Bound the Size of the Managed Heap. There exists a body of work that at-
tempts to reduce the number of objects in a Java execution by employing different levels of tech-
niques, ranging from programming guidelines (Gamma et al. 1995) through static program analy-
ses (Choi et al. 1999; Blanchet 1999; Dolby and Chien 2000; Shuf et al. 2002; Lhotak and Hendren
2005) to low-level systems support (Xu 2013b). Despite the commendable efforts of these tech-
niques, none of them are practical enough for modern data processing frameworks: sophisticated
interprocedural static analyses (such as escape analysis (Choi et al. 1999) and object inlining (Dolby
and Chien 2000)) cannot scale to framework codebases that have millions of lines of codes, while
runtime-system-based techniques (such as Resurrector (Xu 2013b)) cannot scale to large heaps
with billions of objects. In addition, none of the existing techniques can provide any static bound
on the number of heap objects created at runtime.

To solve these practical issues, Facade provides a nonintrusive solution, which aims to reduce
the cost of the managed runtime by limiting the number of heap objects and references at the
compiler level without needing to modify a JVM. Facade advocates to separate data storage from
data manipulation: data are stored in the off-heap memory (i.e., not recognized as heap objects),
while heap objects are created as facades only for control purposes such as function calls (i.e.,
bounded). As the program executes, a many-to-one mapping is maintained between arbitrarily
many data items in the native memory and a statically bounded set of facade objects in the heap.
In other words, each facade keeps getting reused to represent data items.

To enforce this model, our Facade compiler transforms an existing data processing program into
an (almost) object-bounded program: the number of heap objects created for a data class in one
thread is bounded by certain source code properties (i.e., a compile-time constant). More formally,
Facade reduces the number of data objects from O (s ) to O (t ∗ n ∗m + p), where s represents the
cardinality of the dataset, t is the number of threads, n is the number of data classes, m is the
maximum number of facades in a data class’s pool, and p is the number of page objects used to
store data. Details of these bounds can be found in Section 4.5.

In practice, the reduction is often in the scale of several orders of magnitude. As an example,
for GraphChi (Kyrola et al. 2012), a single-machine graph processing system, Facade has reduced
the number of objects created to represent and process vertices and edges from 14, 257, 280, 923 to
1, 363 when running PageRank over the twitter-2010 graph. Although t and p cannot be bounded
statically, they are usually very small, and hence the total number of objects is “almost” statically
bounded. Since data items are no longer represented by heap objects, the space overhead due to
headers and pointers is significantly reduced. Furthermore, reductions on memory management
costs can also be expected because the GC only scans the managed heap, which contains a very
small number of control objects and facades. In the same PageRank example as discussed above,
these reductions have led to 27% savings on execution time, 28% savings on memory consumption,
and 84% savings on GC time.

Challenge 2: What to Transform. Our experience with various frameworks shows that real-world
data-intensive systems have very large codebases and relied heavily on (third-party) libraries. Add
in the fact that reflection and dynamic class loading are prevalently used to instantiate types in
third-party libraries and frameworks that cannot be resolved statically, and there is little hope that
a whole-program analysis/transformation can be done for any real system. No real-world programs
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Fig. 1. Graphical illustration of control and data paths.

Table 1. The LoC Statistics of Control and Data Paths in the “Big Data” Projects under
the AsterixDB Ecosystem

Project Overall #LOC Control #LOC Data #LOC Data #LOC Percentage
Hyracks (UCI 2014) 125,930 71,227 54,803 43.52%
Algebricks (UCI 2015a) 40,116 36,033 4,083 10.17%
AsterixDB (UCI 2015b) 140,013 93,071 46,942 33.53%
VXQuery (UCI 2015e) 45,416 19,224 26,192 57.67%
Pregelix (UCI 2015d) 18,411 11,958 6,453 35.05%
Hivesterix (UCI 2015c) 18,503 13,910 4,593 33.01%
Overall 388,389 245,323 143,066 36.84%

can be guaranteed to be safely transformed without using prohibitively expensive, sophisticated
program analyses.

A key observation from our experience with dozens of real-world systems is that there often ex-
ists a clear boundary between a control path and a data path in a data processing system. As shown
in Figure 1, the control path organizes tasks into pipelines, performs optimizations, and interacts
with users, while the data path represents and manipulates data by invoking built-in operations
such as Aggregate and Join or user-defined functions such as Map and Reduce. Although the data
path creates most of the runtime objects to represent and process data items, its implementation
is rather simple and its code size is often small. This property enables a systematic solution for
data-intensive programs.

To better understand control/data paths in real-world programs, we have studied a set of six
data-intensive systems built on top of the Hyracks data-parallel system (UCI 2014) and counted
the numbers of lines of Java code for the control and data path in each system. These numbers are
shown in Table 1. On average, data paths take about 35% in terms of lines of code, which is much
smaller than the size of control paths. In a typical data-intensive application, it is often harmless to
create objects in the control path, because the number of such objects is very small and independent
of the input size. Our ultimate goal is, thus, to significantly reduce the object representations of data
items in the data path so that they are not subject to the Java memory management. Since a data
path often contains simple data manipulation functions, developing a compiler to transform these
functions is much more feasible than transforming the entire application.
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Facade requires developers to provide a list of Java classes that form the data path. Each class
in this list is transformed by our compiler into a facade-based class. Many performance problems
result from the extensive use of large collections. For each collection class C (e.g., HashMap or
ArrayList) in the standard Java library, we also transform it into a facade-based classC ′. The orig-
inal classC is used in normal ways in the control path, while typeC ′ will be used in the data path
to substitute C . Details of our treatment of arrays and collection classes in the Java library can be
found in Section 4.10.

Challenge 3: How to Reclaim Data Objects. As data objects are no longer subject to garbage col-
lection, an important question is how and when to reclaim them from native memory. A great
deal of evidence shows that a data path is iteration based (Bu et al. 2013; Nguyen et al. 2015; Fang
et al. 2015). In this article, “iteration” refers to a piece of data processing code that is repeatedly
executed. Its definition includes but is more general than that of “computational iteration” per-
formed in graph algorithms. For example, an iteration can also be a MapReduce task or a dataflow
operator in data-parallel frameworks. Iterations are very well defined in data processing frame-
works and can be easily identified by even novices. For example, in GraphChi (Kyrola et al. 2012),
a computational iteration that loads shards into memory, processes vertices, and writes updates
back to disk is explicitly defined as a pair of callbacks (iteration_start() and iteration_end()). It took
us only a few minutes to find these iterations although we had never studied GraphChi before. In
a data-parallel system such as Hadoop, the code for a Map or Reduce task can be considered as an
iteration because it is repeatedly executed to process data partitions.

There is a strong correlation between the lifetime of an object and the lifetime of the iteration
in which it is created: such objects often stay alive until the end of the iteration but rarely cross
multiple iterations. Hence, we develop an iteration-based memory management that allocates data
objects created in one iteration together in a native region and deallocates the region as a whole
when the iteration finishes. There may be a small number of control objects that are also created in
the iteration, and naïvely reclaiming the whole region may cause failures. We rely on developers
to refactor the program code to move the creation of control objects out of the data path. In reality,
this effort is very little because a data path rarely creates control objects (but it does use control
objects passed from the control path).

Summary of Results. We have implemented the Facade compiler based on the Soot compiler
framework (McGill 2014; Vallée-Rai et al. 2000), which supports most of the Java 7 features. To
use Facade, the user identifies iterations and specifies the data path by providing a list of Java
classes to be transformed. Facade automatically synthesizes conversion functions for data objects
that flow across the boundary and inserts calls to these functions at appropriate program points
to convert data formats. We have applied Facade to seven commonly used applications on three
real-world, already well-optimized data processing frameworks: GraphChi, Hyracks, and GPS. Our
experimental results demonstrate that (1) the transformation is very fast (e.g., less than 20 seconds)
and (2) the generated code is much more efficient and scalable than the original code (e.g., runs up
to 2× faster, consumes up to 2× less memory, and scales to much larger datasets).

2 A STUDY OF MEMORY BLOAT IN DATA-INTENSIVE SYSTEMS

In this section, we study two popular data-intensive systems, Giraph (Apache 2014b) and
Hive (Apache 2014d), to investigate the impact of creating Java objects to represent and process
data on performance and scalability. Our analysis aims to understand two problems: (1) how large
the space overhead is due to object headers and references, and how it hurts the packing factor of
memory, and (2) how the creation of massive numbers of objects affects the GC performance and
why.
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2.1 Low Packing Factor

In the Java runtime, each object requires a header space for type and memory management pur-
poses. An additional space is needed by an array to store its length. For instance, in the Oracle
64-bit HotSpot JVM, the header spaces for a regular object and for an array take 8 and 12 bytes,
respectively. In a typical data-intensive application, the heap often contains many small objects
(such as Integers representing record IDs), in which the overhead incurred by headers cannot be
easily amortized by the actual data contents. Space inefficiencies are exacerbated by the pervasive
utilization of object-oriented data structures. These data structures often use multiple-level del-
egations to achieve their functionality; a large amount of space is actually used to store pointers
instead of actual data. In order to measure the space inefficiencies introduced by the use of ob-
jects, we employ a metric called packing factor, which is defined as the maximal amount of actual
data that be accommodated into a fixed amount of memory. While a similar analysis (Mitchell and
Sevitsky 2007) has been conducted to understand the health of Java collections, our analysis is
specific to data-intensive applications where a huge amount of data flows through a fixed amount
of memory in a batch-by-batch manner.

To analyze the packing factor for the heap of a data-intensive application, we use the PageRank
algorithm (Page et al. 1999) as a running example. PageRank is a link analysis algorithm that
assigns weights (ranks) to each vertex in a graph by iteratively computing the weight of each
vertex based on the weights of its inbound neighbors. This algorithm is widely used to rank web
pages in search engines.

We ran PageRank on different open-source cloud computing systems, including Giraph (Apache
2014b), Spark (Zaharia et al. 2010), and Mahout (Apache 2014e), using a six-rack, 180-machine
research cluster. Each machine has two quad-core Intel Xeon E5420 processors and 16GB RAM.
We used a 70GB web graph dataset that has a total of 1,413,511,393 vertices. We found that all of
these systems crashed with java.lang.OutOfMemoryError. A detailed inspection of the size of
each partition processed by each node shows that the maximum partition size is 1.2GB—measured
by pmap after loading the input partition—which is well below the size of the physical memory
on each node. The heap was exhausted because data was inflated significantly after being loaded
into memory and there was an extremely large volume of auxiliary data structures created to help
process it.

To find the root cause of this data inflation, we performed a quantitative analysis using
PageRank. Giraph contains an example implementation of the PageRank algorithm. Part of its
data representation implementation1 is shown below.

public abstract class EdgeListVertex<
I extends WritableComparable,
V extends Writable,
E extends Writable,
M extends Writable>
extends MutableVertex<I, V, E, M> {

private I vertexId = null;

private V vertexValue = null;

/** indices of its outgoing edges */
private List<I> destEdgeIndexList;

1In revision 1232166.
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Fig. 2. A Giraph object subgraph rooted at a vertex.

/** values of its outgoing edges */
private List<E> destEdgeValueList;

/** incoming messages from the previous iteration */
private List<M> msgList;
......

/** return the edge indices starting from 0 */
public List<I> getEdegeIndexes(){

...
}

}

Graphs processed by Giraph are labeled (i.e., both their vertices and edges are annotated with
values) and their edges are directional. Class EdgeListVertex represents a graph vertex. Among
its fields, vertexId and vertexValue store the ID and the value of the vertex, respectively.
Fields destEdgeIndexList and destEdgeValueList reference, respectively, a list of IDs and a
list of values of outgoing edges. msgList contains incoming messages sent to the vertex from
the previous iteration. Figure 2 visualizes the Java object subgraph rooted at an EdgeListVertex
object.

In Giraph’s PageRank implementation, the concrete types for I ,V , E, and M are LongWritable,
DoubleWritable, FloatWritable, and DoubleWritable, respectively. Each edge in the graph is
equi-weighted, and thus the list referenced by destEdgeValueList is always empty. Assume that
each vertex has an average ofm outgoing edges andn incoming messages. Table 2 shows the mem-
ory consumption statistics of a vertex data structure in the heap of the Oracle 64-bit HotSpot JVM.
Each row in the table reports a class name, the number of its objects needed in this representa-
tion, the number of bytes used by the headers of these objects, and the number of bytes used by
the reference-typed fields in these objects. It is easy to calculate that the space overhead for each
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Table 2. Numbers of Objects per Vertex and Their Space Overhead (in Bytes)
in PageRank in the Sun 64-Bit HotSpot JVM

Class #Objects Header (bytes) Pointer (bytes)

Vertex 1 8 40
List 3 24 24

List$Array 3 36 8(m + n)
LongWritable m + 1 8m + 8 0

DoubleWritable n + 1 8n + 8 0
Total m + n + 9 8(m + n) + 84 8(m + n) + 64

The vertex has m outgoing edges and n incoming messages.

Fig. 3. The compact layout of a vertex in an ideal case.

vertex in the current implementation is 16(m + n) + 148 (i.e., the sum of the header size and pointer
size in Table 2).

On the contrary, Figure 3 shows an ideal memory layout that stores only the necessary infor-
mation for each vertex (without using objects). In this case, the representation of a vertex requires
m + 1 long values for vertex IDs, n double values for messages, and two 32-bit int values for spec-
ifying the number of outgoing edges and the number of messages, respectively, which consume
a total of 8(m + n + 1) + 16 = 8(m + n) + 24 bytes of memory. The memory consumption of this
ideal layout is even less than half of the space used for object headers and pointers in the object-
based representation. In this case, the space overhead of the object-based representation is greater
than 200%. One of the challenges the rest of this article tries to address is how to design a memory
system that can provide close-to-ideal space efficiency for the storage of data objects.

2.2 Large Volumes of Objects and References

In a JVM, the GC threads periodically traverse the live object graph in the heap to reclaim unreach-
able objects. If the number of live objects is n and the total number of edges in the object graph is
e , the asymptotic computational complexity of a tracing garbage collection algorithm is O (n + e ).
For a typical data-intensive application, its object graph often consists of a great number of
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isolated object subgraphs, each of which represents either a data item or a data structure created
for processing data items. As such, there often exists an extremely large number of in-memory data
objects, and bothn and e can be orders of magnitude larger than those of a regular Java application.

We use an exception example from Hive’s user mailing list to illustrate the problem. This ex-
ception was found in a discussion thread named “how to deal with Java heap space errors”:2

FATAL org.apache.hadoop.mapred.TaskTracker:
Error running child : java.lang.OutOfMemoryError:Java heap space
org.apache.hadoop.io.Text.setCapacity(Text.java:240)
at org.apache.hadoop.io.Text.set(Text.java:204)
at org.apache.hadoop.io.Text.set(Text.java:194)
at org.apache.hadoop.io.Text.<init>(Text.java:86)
......
at org.apache.hadoop.hive.ql.exec.persistence.RowContainer.next(RowContainer.
java:263)
at org.apache.hadoop.hive.ql.exec.persistence.RowContainer.next(RowContainer.
java:74)
at org.apache.hadoop.hive.ql.exec.CommonJoinOperator.checkAndGenObject
(CommonJoinOperator.java:823)
at org.apache.hadoop.hive.ql.exec.JoinOperator.endGroup(JoinOperator.java:263)
at org.apache.hadoop.hive.ql.exec.ExecReducer.reduce(ExecReducer.java:198)
......
at org.apache.hadoop.hive.ql.exec.persistence.RowContainer.nextBlock
(RowContainer.java:397)
at org.apache.hadoop.mapred.Child.main(Child.java:170)

We inspected the source code of Hive and found that the top method Text.setCapacity() in
the stack trace is not the cause of the problem. In Hive’s Join implementation, its JoinOperator
holds all Row objects from one of the input branches in a RowContainer. This RowContainer has
the same lifetime as JoinOperator (i.e., JoinOperator first creates the RowContainer object in
its initialization, populates and processes it, and does not release it until the processing is about
to finish). In cases where a large number of Row objects are stored in the RowContainer, a single
GC run can become very expensive. For the reported stack trace, the total size of the Row objects
exceeds the heap upper bound, resulting in the OutOfMemory error.

Even if the system has sufficient memory for the application, the large number of Row ob-
jects would still cause severe performance degradation. Suppose the number of Row objects in
the RowContainer is r . The GC time for traversing the internal structure of the RowContainer
object is at least O(r ). For Hive, r grows proportionally with the size of the input data, which can
easily drive the GC cost up substantially. The following example shows a user report from Stack-
Overflow.3 Although this problem has a different manifestation, its root cause is the same as that
of the previous example (i.e., too many objects).

“I have a Hive query which is selecting about 30 columns and around 400,000 records and inserting
them into another table. I have one join in my SQL clause, which is just an inner join. The query fails
because of a Java GC overhead limit exceeded.”

2http://mail-archives.apache.org/mod_mbox/hive-user/201107.mbox/.
3http://stackoverflow.com/questions/11387543/performance-tuning-a-hive-query.
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In addition to the need to traverse an extremely large number of objects, another important
reason for the high memory management cost is that traditional GC algorithms are not designed
for data-intensive systems. For example, a generational GC splits objects into a young and an
old generation. Objects are allocated in the young generation initially. When a nursery GC runs, it
uses cross-generation references as the roots to traverse the young generation, promotes reachable
objects to the old generation, and then reclaims the entire young generation. The generational GC
is fast because its generational hypothesis—the most recently created objects are also those most
likely to become unreachable quickly—holds for most regular non-data-intensive applications.

However, data-intensive applications often violate this hypothesis because their data manipu-
lation functions, while simple in code size, need to process very large datasets and thus, run for
a long time. For example, a computational iteration in Giraph holds all vertices in an array and
iteratively invokes the user-defined update function on these vertices. Hence, all of these vertex
objects and the objects reachable from them cannot be reclaimed until the end of the iteration.
The average time span for an iteration when the Yahoo Webgraph was processed on Giraph
(under the same configuration as described earlier in this section) is 105 seconds, which contains
an average of 44 GC runs. The heap traversal effort of these 44 GC runs is almost completely
wasted because the amount of reclaimed memory is very little.

We have also conducted experiments to verify the nongenerational property of data items in
Big Data applications. Figure 4 depicts the memory footprint and its correlation with epochs
when PageRank (PR) and ConnectedComponents (CC) were executed on GraphChi to process
the twitter-2010 graph on a server machine with two Intel(R) Xeon(R) CPU E5-2630 v2 proces-
sors running CentOS 6.6. The default Parallel Scavenge GC was used. In this GraphChi experi-
ment, GraphChi finished, respectively, in 2,337 and 3,227 seconds, of which 1,289 (55.2%) and 1,324
(41.1%) seconds were spent on the GC. Each epoch lasts about 20 seconds (PR) and 40 seconds
(CC), denoted by dotted lines in Figure 4. We can observe a clear correlation between the endpoint
of each epoch and each significant memory drop (Figure 4(a)) as well as each large memory recla-
mation (Figure 4(b)). During each epoch, many GC runs occur and each reclaims little memory
(Figure 4(b)).

Strawman Given such epochal behaviors, can we solve the problem by forcing GC runs to
happen only at the end of epochs? This simple approach would not work due to the multithreaded
nature of real systems. In systems like GraphChi, each epoch spawns many threads that collectively
consume a huge amount of memory. Waiting until the end of an epoch to conduct GC could easily
cause out-of-memory crashes. In systems like Hyracks (Borkar et al. 2011), a distributed dataflow
engine, different threads have various processing speeds and reach epoch ends at different times.
Invoking the GC when one thread finishes an epoch would still make the GC traverse many live
objects created by other threads, leading to wasted effort.

The extremely large GC overhead in data-intensive applications has recently received much at-
tention from the memory management community: for example, NumaGiC (Gidra et al. 2015)—a
new GC for “Big Data” on NUMA machines—has been proposed to take data location into consid-
eration when performing allocation and collection. Despite this GC support, the large volumes of
data objects in the heap still need to be frequently traversed, which would inevitably cause long
pauses during the execution. Our own work, Facade (Nguyen et al. 2015) and Broom (Gog et al.
2015) attempt to move data objects to regions so that they are not subject to garbage collection.
Work from Maas et al. (2015, 2016) goes in a different direction: they develop a distributed run-
time system that can coordinate GC invocations in a centralized manner rather than optimizing
memory management on each node.
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Fig. 4. Memory footprint for the first 160 seconds of the executions when GraphChi runs PageRank (top)
and ConnectedComponents (bottom). Each dot in (a) represents the memory consumption measured right
after a GC; each bar in (b) shows how much memory is reclaimed by a GC; dotted vertical lines show the
iteration boundaries.

Discussion. The study shows that real-world data-intensive applications are designed and im-
plemented in the same way as regular object-oriented programs, by developers educated in the
culture of object orientation. They follow the long-held programming principle: everything is an
object. Objects are used for both data storage (i.e., storing data fields) and data manipulation (i.e.,
providing methods that process data in the fields). While creating such objects in the control path
to drive the flow of the program may not have a significant impact on performance, doing so in
the data path creates a big scalability bottleneck because there is an overhead associated with each
object representation of data item (e.g., Vertex and Edge objects) and the number of data objects
is huge.

From the developer’s perspective, though, there is not much optimization that can be done,
because the problem is inherent to the managed runtime. For example, all of the data-processing-
related interfaces in Hive require the passing of Java objects as representations of data items—
to manipulate data contained in Row, one has to wrap it into a Row object, as designated by the
interface. If developers want to manually solve this performance problem, they would have no
choice but to redesign these interfaces from scratch, a task nobody could afford to do in reality.

While there exist arguments (Mozilla 2014) that GC should be eliminated for systems software,
we found that GC is very useful in reclaiming control objects that can flow all over the program.
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In a typical data processing system, the control path (that executes the pipeline and manages the
distributed runtime) has a much more complex logic than the data path, and its behavior is very
similar to regular, non-data-intensive programs. Hence, manually allocating/deallocating control
objects is error prone, and it can also significantly slow down the development progress. Adding an
extra memory management layer on top of the GC to handle data objects whose lifetime exhibits
clear patterns is a more viable choice than completely removing the GC.

These observations motivate us to investigate automated solutions at the compiler/systems level
so that we can overcome these fundamental limitations of object orientation while still allowing
developers to fully enjoy the benefit of a managed, object-oriented language.

3 THE FACADE EXECUTION MODEL

To overcome the fundamental problem of memory bloat, we design the Facade framework that
exploits compiler and runtime system support to separate data storage from data manipulation in
a data-intensive program. The key idea is simple: data contents are allocated separately in native
memory; heap objects no longer contain data, and they only provide data-manipulating methods.
Objects now only represent data processors, not data contents, and hence, the number of heap
objects is no longer proportional to the cardinality of the input dataset.

3.1 Data Storage Based on Native Memory

We propose to store data records in native, non-GCed memory. Similarly to regular memory al-
location, our data allocation operates at the page granularity. A memory page is a fixed-length
contiguous block of memory in the off-heap memory, obtained through a JVM’s native support.

To provide a better memory management interface, each native page is wrapped into a Java
object, with functions that can be inserted by the compiler to manipulate the page. Note that the
number of page objects (i.e., p in O(t ∗ n ∗m + p)) cannot be statically bound in our system, as it
depends on the amount of data to be processed. However, by controlling the size of each page
and recycling pages, we often need only a small number of pages to process a large dataset. The
scalability bottleneck of an object-oriented data-intensive application lies in the creation of small
data objects and data structures containing them; our system aims to bound their numbers.

From a regular Java program P , Facade generates a new program P ′, in which the data contents
of each instantiation of a data class are stored in a native memory page rather than in a heap
object. To facilitate transformation, the way a data record is stored in a page is exactly the same as
the way it was stored in an object except that the native-memory-based record does not contain a
heap object’s header and padding.

Figure 5 shows the data layout for an example data structure in our page-based storage system.
Each data record (which used to be represented by an object in P ) starts with a 2-byte type ID,
representing the type of the record. For example, the IDs for Professor, Student[], String, and
Student are 12, 25, 4, and 13, respectively. These types will be used to implement virtual method
dispatch during the execution of P ′. Type ID is followed by a 2-byte lock field, which stores the ID
of a lock when the data record is used to synchronize a block of code. We find it sufficient to use
2 bytes to represent class IDs and lock IDs—in our experiments with large systems, the number of
data classes is often much smaller than 215, and so is the number of distinct locks needed. Details
of the lock implementation and the concurrency support can be found in Section 4.5.

For an array record, the length of the array (4 bytes) is stored immediately after the lock ID. In
the example, the number of student records in the array is nine. The actual data contents (origi-
nally stored in object fields) are stored subsequently. For instance, field id of the professor record
contains an integer 1254; numStudents stores an integer 9; the fields students and name con-
tain memory addresses 0x0504 and 0x070a, respectively. These references are referred to as page
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Fig. 5. A data structure in regular Java and its corresponding data layout in a native page.

references, as opposed to heap references in a normal Java program. Note that for efficiency, page
references are not offsets into the native page where the memory is held; they are the abso-
lute memory address so that the Facade runtime can operate directly on them without further
calculation.

3.2 Using Objects as Facades

We propose to create heap objects as facades for a data class; that is, they are used only for control
purposes such as method calls, parameter passing, or dynamic type checks, but do not contain
actual data. Figure 6 and Figure 7 depict an example with five transformations using the same
Professor class in Figure 5. For simplicity of illustration, we show the unoptimized version of the
generated program, under the assumption that the program is single-threaded and free of virtual
calls. We will discuss the support of these features later.

Class Transformation. The transformations #1 and #2 from Figure 6 show an example of class
transformation. For illustration, let us assume both Professor and Student are data classes. For
Professor, Facade generates a facade class ProfessorFacade, containing all methods defined
in Professor. ProfessorFacade extends class Facade, which has a field pageRef that records
the page reference of a data record (such as 0x0504 in Figure 5). Setting a page reference to the
field pageRef of a facade binds the data record with the facade, so that methods defined in the
corresponding facade class can be invoked on the facade object to process the record. A reader can
think of this field as the this reference in a regular Java program.
ProfessorFacade does not contain any instance fields; for each instance field f in Professor,

ProfessorFacade has a static field f _Offset, specifying the offset (in number of bytes) of f to the
starting address of the data record. These offsets will be used to transform field accesses.

Method Transformation. For method addStudent in Professor, Facade generates a new method
with the same name in ProfessorFacade. Because we no longer have any data objects, for each
reference of a data object in the original program, we substitute it with either a page reference or
a reference of a corresponding facade object using the following criteria:

—For any assignment, load, or store that involves a data object, the reference of the data object
is substituted with its page reference. For example, in Figure 7, transformation #4 replaces
the variable assignments (lines 14–15) in P with page reference assignments (lines 37–38)
in P ′. In these cases, the generated statements do not have any heap objects involved.
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Fig. 6. A transformation example, part (a).

—For parameter passing and value return in a call site, it is difficult to substitute object refer-
ences completely with page references, because if an object is used as a receiver object to
call a method, replacing it with a page reference would make it impossible to make the call.
In this case, we replace references to data objects with references to their corresponding
facade objects. For example, in Figure 6, the signature of method addStudent is changed
in a way so that the Student type parameter is replaced with a new parameter of type
StudentFacade.

In the generated addStudent method (lines 8–23 in Figure 6), the new facade parameter sf is
used only to pass the page reference of the data record that corresponds to the original parameter
in P . The first task inside the generated method is to retrieve the page references (lines 10 and 11
in P ′) from the receiver (i.e., this) and sf , and store them in two local variables this_ref and s_ref .
Any subsequent statement that uses this and s in P will be transformed to use the page references
this_ref and s_ref in P ′, respectively. The field accesses at lines 5 and 6 in P are transformed to
three separate calls to our library methods that read values from and write values to a native page.
Note that what is written into the array is the page reference s_ref pointing to a student record—all
references to regular data objects in P are substituted by page references in P ′.

Allocation Transformation. In Figure 7, the allocation at lines 12 to 13 in P is transformed to
lines 29 to 36 in P ′. Facade allocates space based on the size of type Student by calling a li-
brary method allocate, which performs native-memory-page-based allocation and returns a page
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Fig. 7. A transformation example, part (b).

reference s_ref , which is a native memory address. Details of the allocation algorithm and memory
management are discussed in Section 4.7.

Call Site Transformation. Since statements in P ′ all use page references, a challenge in trans-
forming a call site is how to generate the receiver object on which the call can be made. Our idea is
to use facade objects. If a call is made on a data object in P , we can obtain a facade object to call the
same method in P ′, because a data class and its corresponding facade class have the same meth-
ods. However, doing so naïvely would generate a large number of facade objects, which would still
cause space and memory management overhead. Hence, special care needs to be taken to minimize
the number of facade objects used.

We solve the problem by pooling facade objects. For each facade class, we maintain a pool
that contains a small number of objects of the class. This number can be statically bounded as
discussed shortly. Before generating a call site, the Facade compiler first generates code to retrieve
an available facade object from the pool (lines 32–33 in P ′) and bind it with the page reference s_ref
(lines 35). In this example, the first facade in the pool is available; the reason will be explained
shortly. The constructor of class Student in P is converted to a regular method facade$init in
P ′. Facade then generates a call to facade$init on the retrieved facade object (line 36).

Similarly, a call to method addStudent on the Professor object in P (line 16) is transformed
to a call to the same method on the ProfessorFacade object in P ′ (line 47). This new call site
needs (1) a receiver object and (2) a parameter object. To prepare for these objects, we generate
the statements from line 39 to line 44, which retrieve a ProfessorFacade object pf2 for the receiver

ACM Transactions on Software Engineering and Methodology, Vol. 26, No. 4, Article 12. Pub. date: January 2018.



Understanding and Combating Memory Bloat in Managed Data-Intensive Systems 12:17

and a StudentFacade object sf2 for the parameter from their respective pools, and then bind them
with their corresponding page references. Finally, the call site at line 47 is generated.

Note that the ProfessorFacade object pf2 and the StudentFacade object sf2 are needed be-
cause the object references p and s in P have been replaced with page references p_ref and s_ref in
P ′, both of which have a long type. It would not be possible to call addStudent with these (long)
page references. Hence, facade objects are retrieved to (1) enable the method call and (2) take the
page references into the callee.

Code Generation Invariants. Our code transformation algorithm maintains the following three
major invariants, guaranteeing transformation correctness. First, for each reference r of a data
object in P , P ′ must contain a page reference pr pointing to the native memory location at which
the same object is stored. Since there is a one-to-one mapping between r and pr , any noncall
statement that reads/writes the object referenced by r in P must have a corresponding statement
that reads/writes the native-memory-based object referenced by pr in P ′.

Second, for two different references r and r ′ in P , the two corresponding page references pr and
pr ′ in P ′must be different as well. While facade objects are reused, page references are never shared
among variables. This is straightforward to see given that Facade performs literal translation for
allocation sites, loads, stores, and assignments.

Third, for each parameter (including receiver) of a data class D at each call site in P , a facade
object of type DFacade is retrieved in P ′ from the DFacade object pool. The only purpose of the
facade object is to pass a page reference between a caller and a callee. For example, for parameter
passing, the page reference is written into a facade object right before the call, and then released
from the facade and written into a local variable in the very beginning of the callee. For value
returning, the page reference is written into a facade right before the return statement and released
and written into a stack variable immediately after the call site.

More formally, the invariant regarding the facade usage is that for a pair of instructions (e.g., s
and t ) that bind a facade with a page reference and release the binding, t is the immediate successor
of s on the data dependence graph. In other words, no instructions between s and t can read or
write the facade object accessed by s or t . We refer to the period between the executions of s and
t as a use span of the facade accessed by s and t . Examples of such instruction pairs include lines
42 and 10, and lines 46 and 11 in P ′ of Figure 7. This invariant guarantees that the page reference
read from the facade object by t is exactly the one written into the same facade object by s , and
thus, page references are appropriately propagated between methods.

3.3 Bounding the Number of Facades in Each Thread

Our facade pooling is different from traditional object pooling where the objects requested cannot
be reused until they are explicitly returned to the pool. A facade object does not need to be explicitly
returned because its goal is only to carry a page reference across the method boundary. Its use span
automatically ends when the callee returns to the caller (if used for value return) or the callee is
about to execute (if used for parameter passing). In other words, the way facades are used dictates
that the use spans of the facade objects requested at different statements are completely disjoint.
Hence, in most cases, upon a request for a facade (e.g., at a call site), all facades in the pool are
available to use. This explains why it is always safe to use the first facade of the pool at lines 33,
40, and 44 in Figure 7.

One exception is that if a call site has multiple parameters of the same data class, multiple objects
of the corresponding facade class are needed simultaneously to pass page references. Hence, the
number of facades needed for a data class depends on the number of parameters of this class
needed in a call site. For example, if a call site in P requires n parameters of type Student, we need
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at least n StudentFacade objects in P ′ for parameter passing (e.g., Pools.studentFacades[0],
. . . , Pools.studentFacades[n - 1]). The number of facades for type StudentFacade in P ′ is
thus bounded by the maximal number of Student-type parameters needed by a method call in
P . Based on this observation, we can inspect all call sites in P in a pretransformation pass and
compute a bound statically for each data class. The bound will be used to determine the size of the
facade pool for that type (e.g., Pools.studentFacades) at compile time.

3.4 Performance Benefits

P ′ has the following two performance advantages over P . First, all data records are stored in na-
tive pages and no longer subject to garbage collection. This can lead to an orders-of-magnitude
reduction in the number of nodes and edges traversed by the GC.

Second, significant reduction in memory consumption can be achieved for the following two
reasons: (1) Each data record has only a 4-byte “header” space (8 bytes for an array) in P ′, while
the size of an object header is 12 bytes (16 bytes for an array) in P . This is due to the reduction of
the lock space as well as the complete elimination of space used for GC. (2) As discussed shortly
in Section 4.10, Facade inlines all data records whose size can be statically determined, which
reduces memory consumption for storing object headers and improves data locality.

4 FACADE DESIGN AND IMPLEMENTATION

To use Facade, a user needs to provide a list of data classes that form the data path of an applica-
tion. Our compiler transforms the data path to page-allocate objects representing data items with-
out touching the control path. This handling enables the design of simple intraprocedural analysis
and transformation as well as aggressive optimizations (such as type specialization), making it
possible for Facade to scale to large-scale framework-intensive systems.

4.1 Our Assumptions

Based on the (user-provided) list of data classes, Facade makes two important “closed-world” as-
sumptions based on our experience with dozens of real-world data-intensive systems. The first
one is a reference-closed-world assumption that requires all reference-typed fields declared in a
data class to have data types. This is a valid assumption—there are two major kinds of data classes
in a data-intensive application: classes representing data tuples (e.g., graph nodes and edges) and
those representing data manipulation functions, such as sorter, grouper, and so forth. Both kinds
of classes rarely contain fields of nondata types. Java supports a collections framework, and data
structures in this framework can store both data objects and nondata objects. In Facade, a collec-
tion (e.g., HashMap) is treated as a data class; a new class (e.g., HashMapFacade) is thus generated
in the data path. The original class is still used in the control path. If Facade detects that a data
object flows from the control path to the data path or a paged data record flows the other way
around, it automatically synthesizes a data conversion function to convert data formats. Detailed
discussion can be found in Section 4.6.

The second assumption is a type-closed-world assumption, requiring that for a data class c , c’s
superclasses (except java.lang.Object, which is the root of the class hierarchy in Java) and sub-
classes must be data classes. This is also a valid assumption because a data class usually does not
inherit a nondata class (and vice versa). The assumption makes it possible for us to determine the
field layout of a data record in a page—fields declared in a superclass are stored before fields in
a subclass and their offsets can all be statically computed. The Facade compiler computes a clo-
sure of classes to be transformed from an initial list of user-specified data classes based on the
inheritance relationships.
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We allow both a data class and a nondata class to implement the same Java interface (such
as Comparable). Doing this will not create any page layout issue because an interface does not
contain instance fields. Facade checks these two assumptions before transformation and re-
ports compilation errors upon violations. The developer needs to refactor the program to fix the
violations.

4.2 Data Class Transformation

Class Hierarchy Transformation. For each method m in a data class D, Facade generates a new
methodm′ in a facade class DFacade such thatm andm′ have the same name; for each parameter
of a data class typeT inm,m′ has a corresponding parameter of a facade type TFacade. No special
treatment is required for overloaded methods since each methodm has its distinct Facade method
m′. If D extends another data class E, this relationship is preserved by having DFacade extend
EFacade. All static fields declared in D are also in DFacade; however, DFacade does not contain any
instance fields.

One challenge here is how to appropriately handle Java interfaces. If an interface I is imple-
mented by both a data class C and a nondata class D, and the interface has a method that has a
data-class type parameter, changing the signature of the method will create inconsistencies. In this
case, we create a new interface IFacade with the modified method and make all facades DFacade
implement IFacade. While traversing the class hierarchy to transform classes, Facade generates a
type ID for each transformed class. This type ID is actually used as a pointer that points to a fa-
cade pool corresponding to the type—upon a virtual dispatch, the type ID will be used to retrieve
a facade of the appropriate type at runtime.

Instruction Transformation. Instruction transformation is performed on the control flow graph
(CFG) of a single static assignment (SSA)-based intermediate representation (IR). The output of the
transformation is a new CFG containing the same basic block structures but different instructions
in each block. The transformations for different kinds of instructions are summarized in Table 3.
Here we discuss only a few interesting cases. For a field write-in (i.e., a. f = b in case 3), if b has
a data type but a does not (case 3.3), Facade considers this write as an interaction point (IP), an
operation at which data flows across the control-data boundary. Facade synthesizes a data con-
version function long convertToB(B) that converts data format from a paged data record back
to a heap object (see Section 4.6). If a has a data type but b does not (case 3.4), Facade generates
a compilation error as our first assumption (that data types cannot reference nondata types) is
violated. The developer needs to refactor the program to make it Facade transformable.

An IP may also be a load that reads a data object from a nondata object (case 4.3) or a method call
that passes a data object into a method in the control path (case 6.3). At each IP, data conversion
functions will be synthesized and invoked to convert data formats. Note that data conversion often
occurs before the execution of the data path or after it is done. Hence, these conversion functions
would often not be executed many times and cause much overhead.

Resolving Types. In two cases, we need to emit a call to a method named resolve to resolve the
runtime type corresponding to a page reference. First, when a virtual calla.m(b, . . .) is encountered
(case 6.1), the type of the receiver variable a often cannot be statically determined. Hence, we
generate a call resolve(a_ref ), which uses the type ID of the record pointed to by a_ref to find a
facade of the appropriate type. However, since this information can be obtained only at runtime,
it creates difficulties for the compiler to select a facade object as the receiver from the pool (i.e.,
what index i should be used to access Pools.aFacades[i]).

To solve the problem, we maintain a separate receiver facade pool for each data class. The pool
contains only a single facade object; the resolve method always returns the facade from this
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pool, which is distinct from the parameter pool. Note that we do not need to resolve the type of
a parameter (say, b), because b is not used as a receiver to call a method. We can simply obtain
a facade from the parameter pool based on b’s declared (static) type, and use it to carry b’s page
reference.

The second case in which we need a resolve is the handling of an instanceof type check,
which is shown in case 7 of Table 3.

4.3 Type Specialization for Object and Object[]

Variables and parameters whose static types are Object and Object[] introduce additional chal-
lenges, because whether they reference data objects or not cannot be determined statically. Instead
of using a complicated case analysis that generates different handling for different runtime types,
Facade speculatively treats these variables as data-typed variables and generates code to vali-
date this assumption at runtime. Upon a violation (e.g., a variable/parameter is not an instance
of Facade), the generated program P ′ will throw an exception, and the developer can “blacklist”
these variables/parameters to disable the speculation and recompile the program.

The usage of these general types depends heavily on applications. In fact, in the three frame-
works we have experimented with, they rarely declare variables with Object and Object[]. We
have only encountered six methods (in the application code) with parameters of the Object or
Object[] type, and these parameters were indeed used to pass data objects. However, for other
applications such as Hive, methods with general-type parameters are extensively used. After a
detailed inspection of Hive, we found almost all of these parameters represent data objects—since
Hive is a data warehouse, it is designed to process queries in a way that is very similar to a data-
base. Many methods simply perform filtering or aggregation on generic data records regardless of
their types. Hence, we expect our speculative handling to be still effective for those applications.

4.4 Computing Bounds

Before the transformation, Facade inspects the parameters of each method in the data path to
compute a bound for each data class. This bound will be used as the length of the facade array (i.e.,
the parameter pool) for the type. Note that the bound computation is based merely on the static
types of parameters. Although a parameter with a general type may receive an object of a specific
type at runtime, a facade of the general type will be sufficient to carry the page reference of the
data record (as discussed above) from a caller to a callee. Since we use a separate pool for receivers,
the target method will always be executed appropriately. If the declared type of parameter is an
abstract type (such as interface) that cannot have concrete instances, we find an arbitrary (concrete)
subtype c of this abstract type and attribute the parameter to c when computing bounds. Facade
generates code to retrieve a facade from c’s pool to pass the parameter.

Once the bound for each data class is calculated, Facade generates the class Pools by allocating,
for each type, an array as a field whose length is the bound of the type. The array will be used
as the parameter pool for the type. Facade generates an additional field in Pools that references
its receiver pool (i.e., one single facade) for the type. Eventually, Facade emits an init method
in Pools, which will be invoked by our library to create facade instances and populate parameter
pools.

4.5 Supporting Concurrency

Naïvely transforming a multithreaded program may introduce concurrency bugs. For example,
in P ′, two concurrent threads may simultaneously write different page references into the same
facade object, leading to a data race. The problem can be easily solved by performing thread-local
facade pooling: for each data class, the receiver pool and the regular pool are maintained for each
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Fig. 8. A graphical representation of threads and pools, where AFacade, BFacade, . . . , and ZFacade are facade
types.

thread. We implement this by associating one instance of class Pools with each thread; the init
method (discussed in Section 4.4) is invoked upon the creation of the thread.

Both implicit and explicit locks are supported in Java. Explicit locking is automatically sup-
ported by Facade: all Lock- and Thread-related classes are in the control path and not modified
by Facade. For implicit locking (i.e., the intrinsic lock in an object is used), we need to add addi-
tional support to guarantee the freedom of race conditions. One possible solution is as follows: for
each object o that is used as a lock in a synchronized (o){. . .} construct (i.e., which is translated to
an enterMonitor(o) and an exitMonitor(o) instruction to protect the code in between), Facade
emits code to obtain a facade o′ corresponding to o (if o has a data type) and then generates a new
construct synchronized (o′){. . .}. However, this handling may introduce data races—for two code
regions protected by the same object in P , two different facades (and thus distinct locks) may be
obtained in P ′ to protect them.

We solve the problem by implementing a special lock class and creating a new lock pool (shown
in Figure 8) that is shared among threads; each object in the pool is an instance of the lock class.
The lock pool maintains an atomic bit vector, each set bit of which indicates a lock being used.
For each enterMonitor(o) instruction in P , Facade generates code that first checks whether the
lock field of the data record corresponding to o already contains a lock ID. If it does, we retrieve
the lock from the pool using the ID; otherwise, our runtime consults the bit vector to find the first
available lock (say, l ) in the pool, writes its index into the record, and flips the corresponding bit.
We replace o with l in enterMonitor and exitMonitor, so that l will be used to protect the critical
section instead.

Each lock has a counter that keeps track of the number of threads currently blocking on the lock;
it is incremented upon an enterMonitor and decremented upon an exitMonitor. If the number
becomes zero at an exitMonitor, we return the lock to the pool, flip its corresponding bit, and
zero out the lock space of the data record. Operations such as wait and notify will be performed
on the lock object inside the block.

Worst-Case Object Numbers in P and P’. In P , each data item needs an object representation, and
thus, the number of heap objects needed is O (s ), where s is the cardinality of the input dataset. In
P ′, each thread has a facade pool for a data class. Suppose the maximum number of facades needed
for a data class is m, a compile-time constant. The total number of facades in the system is thus
O (t ∗ n ∗m), where t and n are the numbers of threads and data classes, respectively. Considering
the additional objects created to represent native pages, the number of heap objects needed in P ′

is O (t ∗ n ∗m + p), where p is the number of native pages.
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Note that the addition of the lock pool does not change this bound. The number of lock objects
needed first depends on the number of synchronized blocks that can be concurrently executed (i.e.,
blocks protected by distinct locks), which is bounded by the number of threads t . Since intrinsic
locks in Java are re-entrant, the number of locks required in each thread also depends on the depth
of nested synchronized blocks, which is bounded by the maximal depth of runtime call stack in
a JVM, a compile-time constant. Hence, the number of lock objects is O (t ) and the total number
of objects in the application is still O (t ∗ n ∗m + p). In our evaluation, we have observed that the
number of locks needed is always less than 10.

4.6 Data Conversion Functions

For each IP that involves a data class D, Facade automatically synthesizes a conversion function
forD; this function will be used to convert the format of the data before it crosses the boundary. An
IP can be either an entry point at which data flows from the control path into the data path or an
exit point at which data flows in a reverse direction. For an entry point, a long convertFromA(A)
method is generated for each involved data class A; the method reads each field in an object of A
(using reflection) and writes the value into a page. Exit points are handled in a similar manner. Our
experiments on three systems show that the number of conversion functions needed is very small
(≤4). This is expected and consistent with our observation that the control path and data path are
well separated in data-intensive programs.

4.7 Memory Allocation and Page Management

The Facade runtime system maintains a list of pages, each of which has a 32KB space (i.e., a com-
mon practice in the database design (Graefe 1993)). To improve allocation performance, we classify
pages into size classes (similarly to what a high-performance allocator would do for a regular pro-
gram), each used to allocate objects that fall into a different size range. When allocating a data
record on a page, we apply the following two allocation policies whenever possible: (1) back-to-
back allocation requests (of the same size class) get contiguous space to maximize locality; (2) large
arrays (whose sizes are ≥32KB) are allocated on empty pages: allocating them on nonempty pages
may cause them to span multiple pages, therefore increasing access costs. Otherwise, we request
memory from the first page on the list that has enough space for the record. To allow fast alloca-
tion for multithreading, we create a distinct page manager (that maintains separate size classes and
pages) per thread so that different threads concurrently allocate data records on their thread-local
pages. Having distinct page managers also eliminates the potential fragmentation issue associated
with size classes.

The data path is iteration based. We define an iteration to be a repeatedly executed block of code
such that the lifetimes of data objects created in different executions of this block are completely
disjoint. In a typical data-intensive program, a dataset is often partitioned before being processed;
different iterations of a data manipulation algorithm (e.g., sorting, hashing, or other computations)
then process distinct partitions of the dataset. Hence, pages requested in one iteration of P ′ are
released all at once when the iteration ends. Although different data processing frameworks have
different ways of implementing the iteration logic, there often exists a clear mark between different
iterations, e.g., a call to start to begin an iteration and a call to flush to end it.

We rely on a user-provided pair of iteration_start and iteration_end calls to manage our pages.
Upon a call to iteration_start that signals the beginning of an iteration, we create a page manager
that will perform page allocation and memory allocation as discussed above. All pages are recycled
immediately upon a call to iteration_end. While this may sound nontrivial, our experience with
a variety of applications shows that iterations are often very well defined and program points to
place these calls can be easily found even by novices without much understanding of the program
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Fig. 9. A program (a) and its corresponding page manager tree after line 7 is executed (b), assuming two
threads t1 and t2 are executing.

logic. For example, in GraphChi (Kyrola et al. 2012), a single-machine graph processing framework,
iteration_start and iteration_end are the callbacks explicitly defined by the framework. Although
we had had zero knowledge about this framework, it took us only a few minutes to find these
events. Note that iteration-based memory management is used only to deallocate data records and
it is unsafe to use it to manage control objects. Those objects can cross multiple iterations and,
hence, we leave them to the GC for memory reclamation.

In order to quickly recycle memory, we allow the developer to register nested iterations. If a user-
specified iteration_start occurs in the middle of an already-running iteration, a subiteration starts;
we create a new page manager, make it a child of the page manager for the current iteration, and
start using it to allocate memory. The page manager for a thread is made a child of the manager for
the iteration where the thread is created. Hence, each page manager has a pair 〈iterationID, thread〉
identifier and they form a tree structure at runtime. When a (sub)iteration finishes, we simply find
its page managerm and recursively release pages controlled by the managers in the subtree rooted
atm. Recycling can be done efficiently by creating a thread for each page manager and letting them
reclaim memory concurrently.

Since each thread t is assigned a page manager upon its creation, the pair identifier for its default
page manager is 〈⊥, t〉; ⊥ represents the fact that no iteration has started yet. Data records that
need to be created before any iteration starts (e.g., usually large arrays) are allocated by this default
page manager and will not be deallocated until thread t terminates.

To illustrate, Figures 9(a) and 9(b) show, respectively, a simple program and the corresponding
page managers created in Facade. In the beginning, no iteration has started yet; all allocation
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requests are handled by the default page manager 〈⊥,main〉. Assuming there are two worker
threads t1 and t2 executing the program, upon the call to iteration_start in line 3, two page man-
agers 〈1, t1〉 and 〈1, t2〉 are created and placed as the children of the default manager to handle
allocations in thread t1 and t2, respectively, for iteration #1. The call to iteration_start in line 5
signals the start of subiteration #2. Consequently, the page managers 〈2, t1〉 and 〈2, t2〉 are created
as the children of the managers 〈1, t1〉 and 〈1, t2〉, respectively. Facade allows arbitrarily nested
iterations. When the execution encounters another iteration_start in line 7, Facade creates two
page managers 〈3, t1〉 and 〈3, t2〉. The calls to iteration_end in lines 11, 13, and 15 trigger page
reclamation in the reverse order of page allocation.

4.8 Correctness and Profitability Arguments

It is easy to see the correctness of the class transformation and the generation of data-accessing
instructions as shown in Table 3, because the data layout in a native memory page is the same as
in a heap object. This subsection focuses on the following:

Facade Usage Correctness. If a page reference is assigned to a facade that has not released another
page reference, a problem would result. However, it is guaranteed that this situation will not occur
because (1) a thread will never use a facade from another thread’s pool and (2) for any index i in
a facade pool p, the page reference field of p[i] will never be written twice without a read of the
field in between. The read will load the page reference onto the thread’s stack and use it for the
subsequent data accesses.

Memory Management Correctness. Iteration-based memory management converts dynamic
memory reclamation to static reclamation, and it is very difficult to make it correct for general
objects in a scalable way. Facade performs iteration-based deallocation only for data items in na-
tive memory. Data items allocated in one iteration represent the data partition processed in the
iteration. These items will often not be needed when a different data partition is processed (in a
different iteration). Since practicality is our central design goal, we choose not to perform any con-
servative static analysis (e.g., escape analysis (Choi et al. 1999)) to verify whether data items can
escape. A real-world data-intensive application often relies heavily on (third-party) libraries and
the heavy use of interfaces in the program code makes it extremely difficult for any interprocedural
analysis to produce precise results. Instead, we simply assume that instances of the user-specified
data classes can never escape the iteration boundary. However, if a data object escapes an iteration
through a control object, the synthesized conversion function will convert the paged record to an
object.

Transformation Safety. Our transformation is mostly local and does not change the control flow
of the original program. This feature makes it easier for Facade to preserve semantics in the pres-
ence of complicated language constructs such as exception handling (i.e., exception-throwing logic
is not changed by Facade: checked exception will be thrown in regular ways, while unchecked
exception still crashes the program). In other words, our transformation is safe. The memory man-
agement correctness thus relies solely on the user’s correct specification of data classes. Section 5
reports our own experiences with finding data classes for real-world programs that we have never
studied.

Transformation Profitability. Not all Java programs are suitable for Facade transformations. As
mentioned in Section 1, it is profitable using Facade when (1) the number of runtime objects of
a class is exceptionally large and (2) the lifetimes of these objects follow epochal patterns; that
is, they align with computational iterations in which they are created. While Facade works well
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for data-intensive systems, they may not be as effective to transform regular Java applications for
performance improvement.

4.9 Modeling of Important Java Library Classes

All the primitive-type wrappers in Java (e.g., Integer, Float, etc.) are considered as data classes.
We manually implement the StringFacade class to support all string-related operations instead
of generating it automatically from the Java String class. This is first because we want to inline
characters, rather than creating a two-layer structure (as done in the Java String implementation).
In addition, the Java String implementation has many references and dependencies, which would
make Facade transform classes we believe to be in the control path (e.g., classes representing
formats and calendars). Records for all primitive-type wrappers and strings are inlined.

Commonly used native methods such as System.arraycopy and Unsafe.compareAndSwap are
manually modeled to operate on Facade-page-based data because it is not possible to transform
native library methods. In generated programs, the original native methods are replaced with our
own version. In addition, we provide implementations of the methods hashCode, equals, and
clone in class Facade. For example, equals is implemented by using page reference as a substi-
tution of object identity, while hashCode is implemented by computing a hash code based on the
page reference contained in the facade.

A real-world program makes heavy use of collection classes in the java.util framework. Their
implementations in the Oracle JDK often reference many other classes; for example, more than 100
classes all over the JDK can be transitively reached from class HashMap, and many of these classes
have nothing to do with data processing. Instead of transforming all these classes, we create our
own (page-based) implementations for all important collection classes, including various types
of maps, sets, and lists. For example, since HashMap is in the data path, all its superclasses except
java.lang.Object are included in the data path and they are all transformed manually into facade
classes.

It took us about 2 weeks of programming to develop our own versions of library classes. The
major part of the development was easy—we simply followed the logic from the original collection
classes in the JDK. However, one challenge is how to break dependencies to classes that are in the
control path. If a data class has a field of a noncollection class type, we carefully inspected the class
to understand whether removing the field would cause any semantic inconsistencies. If it would,
we include it in the data path and transform it into a facade class; otherwise, we remove the field
and replace the code that uses the field with our own version that implements the same logic in
different ways. Rigorous testing was performed to ensure that our class collections have the same
semantics as their JDK counterparts.

4.10 Implementation and Optimizations

We have implemented Facade based on the Soot Java compiler infrastructure and made it publicly
available on BitBucket (https://bitbucket.org/khanhtn1/facade). Facade consists of approximately
40,000 lines of Java code. Our transformation works on Jimple, an SSA-based three-address IR;
the transformation occurs after all traditional dataflow optimizations are performed to eliminate
redundancies in P , such as dead code and unnecessary loads. We develop a few additional opti-
mizations that target common operations we have observed in data-intensive applications.

—Array inlining: for a data array whose element size can be statically determined, we inline its
elements to improve data locality and reduce pointer dereference costs. Upon the creation
of an array, we allocate l × s bytes of memory, where l and s are the array length and its
element size. We perform a static analysis that identifies objects that must be written into
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the array and remove their allocation sites. Their indices in the array will be used as their
page references. Although array inlining may lead to wasted space for general programs, it
is very effective for data-intensive applications in which large arrays are often created and
their elements are often “owned” by the arrays (i.e., accessed only through the arrays).

—Special handling of oversized objects: keeping large arrays that are no longer used in a
page can lead to excessive memory usage. To solve the problem, we create a special allocate
function in the page manager that allows us to allocate pages bigger than 32KB for large
arrays. Each large array will take one single page, instead of spanning multiple (32KB) pages.
These pages are located in an “oversize” class and can be freed manually (after they are no
longer used) without waiting until the end of an iteration. Right now this optimization is
enabled only in the implementation of the resize function in various collection classes, and
it has been shown to be effective in improving memory efficiency of applications that make
heavy use of maps and lists. We are in the process of developing an automated analysis that
can detect such early deallocation opportunities for large objects in the generated code.

—Static resolution of virtual calls: we use Spark (Lhoták and Hendren 2003), a simple and
inexpensive context-insensitive points-to analysis to statically resolve virtual calls. For the
resolved calls, their receiver facades can be statically determined.

5 EVALUATION

We selected three different data processing frameworks and used Facade to transform their data
paths. Our evaluation on seven common data analytical applications on both single machines and
clusters shows that, even for already well-optimized systems, Facade can still improve their per-
formance and scalability considerably.

5.1 GraphChi

Transformation. GraphChi (Kyrola et al. 2012) is a high-performance graph analytical framework
that has been well optimized for efficient processing of large graphs on a single machine. Since
we had not had any previous experience with GraphChi, we started out by profiling instances
of data classes to understand the control and data path of the system. The profiling results show
that ChiVertex, ChiPointer, and VertexDegree are the only three classes whose instances grow
proportionally with the input data size. From these three classes, Facade detected 18 boundary
classes that interact with data classes but do not have many instances themselves. Boundary classes
have both data and nondata fields. We allow the user to annotate data fields with Java pragmas so
that Facade can transform these classes and only page-allocate their data fields.

With about 40 person-hours of work (to understand data classes, profile their numbers, and
annotate boundary classes for a system we had never studied before), Facade transformed all of
these classes (7,753 Jimple instructions) in 10.3 seconds, at a speed of 752.7 instructions per second.
Iterations and intervals are explicitly defined in GraphChi—it took us only a few minutes to add
callbacks to define iterations and subiterations.

Test Setup. We tested the generated code and compared its performance with that of the original
GraphChi code. The experiments were performed on a four-core server with four Intel Xeon E5620
(2.40GHz) processors and 50GB of RAM, running Linux 2.6.32. We experimented extensively with
two representative applications, page rank (PR) and connected components (CC). The graph used
was the twitter-2010 graph (Kwak et al. 2010), consisting of 42M vertices and 1.5B edges.

We used the Java HotSpot(TM) 64-bit Server VM (build 20.2-b06, mixed mode) to run all exper-
iments. The state-of-the-art parallel generational garbage collector was used for memory recla-
mation. This GC combines parallel Scavenge (i.e., copying) for the young generation and parallel
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Table 4. Performance Summary of GraphChi on twitter-2010

App ET(s) ET’(s) %ET %UT %LT %GT PM(MB) PM’(MB) %PM
PR-8g 1,540.8 1,180.7 23.4% 23.7% 25.7% 84.2% 8,469.8 6,135.4 27.6%
PR-6g 1,561.2 1,146.2 26.6% 25.2% 30.5% 81.7% 6,566.5 6,152.6 6.3%
PR-4g 1,663.7 1,159.2 30.3% 34.5% 28.5% 86.7% 4,448.7 6,127.4 −37.7%
CC-8g 2,338.1 2,207.8 5.6% 6.4% 8.5% 77.0% 8,398.3 6,051.6 27.9%
CC-6g 2,245.8 2,143.4 4.6% 5.4% 10.0% 72.5% 6,557.8 6,045.3 7.8%
CC-4g 2,288.5 2,120.9 7.3% 9.4% 11.7% 74.4% 4,427.4 6,057.0 −36.8%

Reported are execution time of original run (ET) and facade run (ET’) in seconds, the reduction of total execution
times (%ET), engine update times (%UT), data load times (%LT), garbage collection times (%GT), and peak memory
consumptions (PM and PM’) in megabytes under three different memory budgets (e.g., 8GB, 6GB, and 4GB); peak
memory is computed by calculating the maximum from a set of samples of JVM memory consumptions collected
periodically from pmap; graph preprocessing time is not included.

Mark-Sweep-Compact for the old generation to quickly reclaim unreachable objects. GraphChi
uses a parallel sliding-window algorithm that partitions data into shards. Since the number of
shards has only little impact on performance (as reported in Figure 8(c) in Kyrola et al. (2012) and
also confirmed in our experiments), we fixed the number of shards to 20 in our experiments.

Performance. GraphChi determines the amount of data to load and process (i.e., memory budget)
in each iteration dynamically based on the maximum heap size. This is a very effective approach
to reduce memory pressure and has been shown to be much more efficient than loading a fixed
amount data per iteration. We ran P and P ′ with the same maximal heap size so that the same
amount of data is loaded in each iteration (i.e., guaranteeing the same I/O time in both executions).
Note that P ′ actually does not need a large heap because of the use of native memory. We tried
various heap sizes and found that the smallest heap size for running P ′ was 2.5GB, while P could
not execute when the heap was smaller than 4GB.

Table 4 shows the detailed performance comparisons. Note that our performance numbers may
look different from those reported in Kyrola et al. (2012), because their experiments used SSD and
a C++ version of GraphChi. In Table 4, P ′ outperforms P for all configurations. The performance
improvements Facade has achieved for PR and CC over twitter-2010 on average are, respectively,
26.8% and 5.8%; larger gains were seen when we experimented with smaller graphs (discussed
shortly). Not only does the generated program P ′ have much less GC time (i.e., an average 5.1×
reduction), but also data load and engine update time have been reduced primarily due to inlining
and direct memory accesses.

For PR, the number of objects for its data classes has been reduced from 14, 257, 280, 9234 to
1,363, of which 1,000 is the number of memory page objects and 363 is the number of total facade
objects. Other than the main thread, GraphChi uses two thread pools, each containing 16 threads,
and each thread has a pool of 11 facades. Hence, the total number of data objects equals 1,000 +
11 ∗ (16 ∗ 2 + 1) = 363, leading to dramatically decreased GC effort. The cost of page creation and
recycling is negligible: the time it took to create and recycle pages was less than 5 seconds during
the execution of PR’ with five major iterations and 159 sub-iterations.

For P , its memory consumption is bounded by the maximum heap size, while the memory usage
for P ′ is quite stable across different memory budget configurations. This is because our heap
contains only objects in the control path, whose numbers are very small; the off-heap data storage

4Obtained from our profiling that counts the number of runtime objects of data classes such as ChiVertex, ChiPointer,
and VertexDegree.
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Fig. 10. Performance improvements with and without data record inlining.

Fig. 11. (a) Computational throughput of GraphChi on various graphs (x-axis is the number of edges);
each trend line is a least-squares fit to the average throughput of a program. (b) Memory usage of external

sort (ES) on Hyracks. (c) Memory usage of word count (WC) on Hyracks.

is not subject to the GC and is only determined by the amount of data processed. For both P and
P ′, their running time does not vary much as the memory budget changes. This is primarily due to
the adaptive data loading algorithm used by GraphChi. For systems that do not have this design,
a significant time increase and the GC efforts can often be seen when the heap becomes smaller,
and thus, further performance improvement can be expected from Facade’s optimization. Note
that under a 4GB heap, P consumes less memory than P ′. This is because the GC reclaims objects
immediately after they become unreachable, while Facade allows dead data records to accumulate
until the end of a (sub)iteration (i.e., trades off space for time).

To have a better understanding of how much inlining contributes to the performance improve-
ments, we have compared the performance of the transformed GraphChi with and without inlining
enabled. The results are shown in Figure 10. Inlining contributes to 4% and 1.5% of the improve-
ments for PR and CC, respectively. The majority of the improvement comes from the reduction in
GC efforts.

Scalability. We measured scalability by computing throughput, the number of edges processed in
a second. From the twitter-2010 graph, we generated four smaller graphs with different sizes. We fed
these graphs to PR and CC to obtain the scalability trends, which are shown in Figure 11(a). An 8GB
heap was used to run P and P ′. While 8GB appears to be a large heap for these relatively smaller
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Table 5. GraphChi Performance Comparisons on Different Datasets

Input Size Page Rank (PR) Connected Component (CC)

|S | |V | |E | T(s) T’(s) %ET %TR T(s) T’(s) %ET %TR
5.1GB 33.9M 293.7M 661.3 341.1 48.4% 93.9% 696.3 582.0 16.4% 19.6%
6.4GB 35.6M 367.1M 711.4 414.6 41.7% 71.6% 796.8 680.1 14.6% 17.2%
8.5GB 37.2M 489.5M 808.5 533.2 34.1% 51.6% 991.6 880.1 11.3% 12.7%

12.8GB 38.7M 734.2M 1,113.0 770.9 30.7% 44.4% 1,411.0 1,250.8 11.4% 12.8%
26.2GB 41.0M 1.5B 1,540.8 1,180.7 23.4% 30.5% 2,338.1 2,207.8 5.6% 5.9%

Reported are the total execution times of the original program (T) and its Facade-version (T’) measured in seconds;
%ET reports Facade’s reduction in execution time and %TR reports the throughput improvement.

graphs, our goal is to demonstrate, even with large memory resources and thus less GC effort, that
Facade can still improve the application performance substantially. For both versions, they scale
very well with the increase of the data size. The generated program P ′ has higher throughput than
P for all the graphs. In fact, for some of the smaller graphs, the performance difference, shown
in Table 5, between P and P ′ is even larger than what is reported in Table 4. For example, on
a graph with 300M edges, PR’ and CC’ are 48% and 17% faster than PR and CC, respectively.
Since the cost of single-PC-based graph processing is dominated by disk accesses, the fraction of
the I/O cost is smaller when processing smaller graphs and thus the effectiveness of the Facade
optimizations becomes more obvious. This explains the reason that the performance difference is
larger on smaller graphs.

5.2 Hyracks

Hyracks (UCI 2014; Borkar et al. 2011) is a data-parallel platform that runs data-intensive jobs on
a cluster of shared-nothing machines. It has been optimized manually to allow only byte buffers
to store data and has been shown to have better scalability than object-based frameworks such as
Hadoop. However, user functions can still (and mostly likely will) use object-based data structures
for data manipulation.

After Facade transformed a significant portion of the high-level data manipulation functions in
Hyracks, we evaluated performance and scalability with two commonly used applications: word
count (WC) and external sort (ES). It took us 10 person-hours to find and annotate these user-
defined operators; Facade transformed eight classes in 15 seconds, resulting in a speed of 990
instructions per second.

Other than the eight classes automatically transformed, the application code uses 15 collection
classes from the Java library, which we already modeled manually. Among these eight classes, two
are user-defined functions (one for WC and the other for ES), and the remaining six classes are
Hyracks internal classes specifying properties and operator states. Three interaction points were
detected: one for passing data from the control path into the data path and the other two passing
processed data back into the control path (both via ByteBuffer). Data conversion functions were
synthesized and calls to them were added at these points. Iterations are easy to identify: calls to
iteration_start and iteration_end are placed at the beginning and the end of each Hyracks operator
(i.e., one computation cycle), respectively.

Note that these six Hyracks internal classes do not include those that perform built-in data
manipulation functions such as join and filter, because our search started from the user-defined
application code and we were not familiar enough with the Hyracks framework to identify all built-
in data processing functions. In general, whether a class is transformed or not relies on whether it
is in the user-specified list, and Facade can transform different parts of the data path individually.
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Table 6. Hyracks Performance Comparisons on Different Datasets

Input Size External Sort (ES) Word Count (WC)

|S | |V | |E | T(s) T’(s) %GC %PM T(s) T’(s) %GC %PM
3GB 25.0M 313.8M 95.5 89.3 88.3% −29.3% 48.9 57.4 98.2% 31.9%
5GB 33.2M 562.4M 178.2 167.1 96.9% −3.3% 72.5 180.8 96.5% 31.5%

10GB 75.6M 1.1B 326.3 302.5 90.8% 4.4% OME(683.1) 1,887.1 N/A N/A

14GB 143.1M 1.5B 459.0 426.0 93.4% 5.4% OME(943.2) 2,693.0 N/A N/A

19GB 310.8M 1.8B 806.4 607.5 98.9% 8.5% OME(772.4) 3,160.2 N/A N/A

Reported are the total execution times of the original program (T) and its Facade-version (T’) measured in seconds;
OME(n) means the program runs out of memory in n seconds. %GC and %PM report Facade’s reduction in GC
time and peak memory consumption, respectively.

Test Setup. We ran Hyracks on a 10-slave-node (c3.2x large) Amazon EC2 cluster. Each machine
has two quad-core Intel Xeon E5-2680 v2 processors (2.80GHz) and 15G RAM, running Linux
3.10.35, with enhanced networking performance. The same JVM and GC were used in this ex-
periment. We converted a subset of Yahoo!’s publicly available AltaVista Web Page Hyperlink
Connectivity Graph dataset (Yahoo 2014) into a set of plain text files as input data. The dataset
was partitioned among the slaves in a round-robin manner. The two applications were executed
as follows: we created a total of 80 concurrent workers across the cluster, each of which reads a
local partition of the data. Both WC and ES have a MapReduce-style computation model: each
worker computes a local result from its own data partition and writes the result into the Hadoop
Distributed File System (HDFS) running on the cluster; after hash-based shuffling, a reduce phase
is then started to compute the final results.

Unlike GraphChi that adaptively loads data into memory, Hyracks loads all data upfront before
the update starts. We ran both P and P ′with an 8GB heap. When the heap is exhausted in P , the JVM
terminates immediately with out-of-memory errors. Naïvely comparing scalability would create
unfairness for P , because P ′ uses a lot of native memory. To enable a fair comparison, we disallowed
the total memory consumption of P ′ (including both heap and native space) to go beyond 8GB.
In other words, an execution of P ′ that consumes more than 8GB memory is considered as an
“out-of-memory” failure.

Performance and Scalability. Table 6 shows a detailed running time comparison between P and
P ′ on datasets of different sizes (which are all generated from the Yahoo! web graph data). P ′

outperforms P for all the inputs except the two smallest (3GB and 5GB) ones for WC. For these
datasets, each machine processes a very small data partition (i.e., 300MB and 500MB). The GC
effort for both P and P ′ is very small, and hence, the extra effort of pool accesses and page-based
memory management performed in P ′ slows down the execution. However, as the size of the
dataset increases, this effort can be easily offset from the large savings of GC costs. We can also
observe that P ′ scales to much larger datasets than P . For example, WC fails in 683.1 seconds
when processing 10GB, while WC’ successfully finishes in 3,160.2 seconds for the 19GB dataset.
Although both ES and ES’ can scale to 19GB, ES’ is about 24.7% faster than ES.

Figures 11(b) and 11(c) show the memory usage comparisons for ES and WC, respectively. Each
bar represents the memory consumption (in GB) of the original program P , while a red line con-
nects the memory consumptions of P ′ for different datasets. If P runs out of memory, its memory
consumption is not shown. It is clear to see that P ′ has a smaller memory footprint than P in al-
most all the cases. In addition, P ′ has achieved an overall 25× reduction in the GC time, with a
maximum 88× (from 346.2 seconds to 3.9 seconds).
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Table 7. GPS Performance Comparisons on Different Datasets

Input Size Page Rank (PR) K-Means (KM) Random Walk (RW)

|S | |V | |E | %ET %GC %ET %GC %ET %GC
LJ 0.5GB 4.8M 68.0M −0.3% 15.5% 0.1% 20.5% 0.2% 39.8%
LJ-A 2.5GB 24.0M 340.0M 4.7% 12.8% 2.9% 6.0% 9.4% 34.0%
LJ-B 5.0GB 48.0M 680.0M 1.6% 11.6% 6.4% 10.0% 7.2% 27.8%
LJ-C 7.5GB 72.0M 1.0B 2.4% 12.2% 8.2% 4.8% 6.5% 30.1%
LJ-D 10.0GB 96.0M 1.5B 5.5% 18.3% 7.7% 4.4% 7.6% 32.5%
LJ-E 12.5GB 120.0M 1.7B 17.3% 30.8% 13.5% 23.1% 10.9% 32.1%
TW 26.2GB 41.0M 1.5B 2.3% 14.4% 3.5% 7.19% 4.9% 19.9%

Reported are the Facade’s reduction in execution time (%ET) and GC time (%GC); LJ-A. . .LJ-E are different synthetic
supergraphs of the LiveJournal (LJ) Graph; TW is the twitter-2010 graph.

5.3 GPS

GPS (Salihoglu and Widom 2013) is a distributed graph processing system developed for scal-
able processing of large graphs. We profiled the execution and identified a total number of four
(vertex- and graph-related) data classes whose instances grow proportionally with the data size.
Starting from these classes, Facade further detected 44 data classes and 13 boundary classes. Af-
ter an approximate 30-person-hour effort of understanding these classes, Facade transformed a
total number of 61 classes (including 10,691 Jimple instructions) in 9.7 seconds, yielding a 1,102-
instructions-per-second compilation speed.

We used three applications—page rank, k-means, and random walk—to evaluate performance.
The same (Amazon EC2) cluster environment was used to run the experiments. We created a total
of 20 workers, each with a 4GB heap.

GPS uses the distributed message-passing model of Pregel (Malewicz et al. 2010). The behav-
ior of each vertex is encapsulated in a function compute, which is executed exactly once in each
superstep. GPS is overall less scalable than GraphChi and Hyracks due to its object-array-based
representation of an input graph. GPS expects vertices to be labeled contiguously starting from
0, and therefore, vertices can be efficiently stored in an array. While the goal of this design is to
improve performance by avoiding using Java data structures (e.g., ArrayList), it leads to memory
inefficiencies in many cases. This is because each node processes an arbitrary set of vertices and
thus the array becomes a sparse structure with a lot space wasted. To solve the problem, we re-
placed the array with an ArrayList before performing transformation—since Facade will allocate
the ArrayList in the native memory, this replacement saves a lot of space without incurring extra
GC overhead.

The set of input graphs we used includes the twitter-2010 graph, the LiveJournal graph, and
five synthetic supergraphs of LiveJournal (e.g., the largest supergraph has 120M vertices and 1.7B
edges). Table 7 shows detailed performance comparisons. Compared to the original implementa-
tion P , the generated version P ′ has achieved a 3% to 15.4% running time reduction, a 10% to 39.8%
GC time reduction, and an up to 14.4% space reduction. P and P ′ have about the same running time
on the smallest graph (with 4.8M vertices and 68M edges). However, for all the other graphs in the
input set, clear performance improvements can be observed on P ′, which is especially significant
on the largest graph (LJ-E). The reason Facade can improve GPS’ performance is that GPS still
allows the creation of objects to represent vertex values (e.g., DoubleWritable, TwoIntWritable,
LongWritable, etc.). These (small) objects in turn are stored in a huge array. Facade automatically
inlines all of them into the array, therefore improving the performance of GPS.
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Unlike GraphChi where the majority of the improvement comes from the reduction in GC ef-
forts, in GPS, data record inlining contributes the most to the improvement. Without inlining,
Facade-generated programs run slightly faster (1%–2%) than the original. This is because the de-
sign of GPS is very similar in spirit to what Facade intends to achieve in many ways. First, it has
extensive use of raw (i.e., primitive) arrays to store data such as adjacent list or message content.
Second, GPS reduces the memory cost of allocating many Java objects by using canonical objects.
Instead of storing the value and the adjacency list of each vertex inside a separate Vertex object
and calling compute on each object as in Giraph, GPS workers use a single canonical Vertex ob-
ject to perform program logic (i.e., invoke compute) with vertex values and adjacency list stored
in separate data structures. GPS also uses a single canonical Message object for message passing.
Incoming messages are stored as raw bytes in the message queues, and a message is deserialized
into the canonical Message object only when the canonical Vertex object iterates over it.

5.4 Discussion

Admittedly, to use Facade, a considerable amount of user effort is needed to understand the pro-
gram and provide a correct list of data classes as well as iteration markers (i.e., iteration_start
and iteration_end calls). While the markers are often well defined in a Big Data platform, the user
should understand such semantic information by profiling the application (as we did in our ex-
periments) to distinguish data classes (e.g., classes that have a large number of runtime objects)
from control classes. The Facade compiler will assist users in identifying the list of data classes
by throwing compilation errors when assumptions (Section 4.1) are violated. Users are then to
refactor the violating classes to make the application Facade transformable. However, although
we had never studied any of these frameworks before this work, we found that the majority of the
manual effort was spent on profiling each system to understand the data path and setting up the
execution environments (e.g., on average, it took us a day’s worth of work for each framework).
Once we identified an initial set of data classes, the effort to specify iterations and annotate bound-
ary classes was almost negligible. It would have taken much less time had the developers of these
frameworks used Facade themselves.

6 RELATED WORK

“Big Data” Optimizations. While there exists a large body of work on optimizing data-intensive
applications, these existing efforts focus on domain-specific optimizations, including, for example,
data pipeline optimizations (Isard et al. 2007; Agrawal et al. 2008; Chaiken et al. 2008; Olston et al.
2008a; Yu et al. 2008; Zhou et al. 2010; Chambers et al. 2010; Borkar et al. 2011; Guo et al. 2012;
Kyrola et al. 2012), query optimizations (Olston et al. 2008b; Condie et al. 2010; Dittrich et al. 2010;
Nykiel et al. 2010; Lee et al. 2011; Murray et al. 2011), and Map-Reduce-related optimizations (Pike
et al. 2005; Yang et al. 2007; Dean and Ghemawat 2008; Thusoo et al. 2009; Afrati and Ullman 2010;
Thusoo et al. 2010; Liu et al. 2012).

Cascading (Cascading 2015) is a Java library built on top of Hadoop. It provides abstractions
for developers to explicitly construct a dataflow graph to ease the challenge of programming data-
parallel tasks. Similarly to Cascading, FlumeJava (Chambers et al. 2010) is another Java library that
provides a set of immutable parallel collections. These collections present a uniform abstraction
over different data representations and execution strategies for MapReduce. StarFish (Herodotou
et al. 2011) is a self-tuning framework for Hadoop that provides multiple levels of tuning support.
At the heart of the framework is a Just-in-Time optimizer that profiles Hadoop jobs and adaptively
adjusts various framework parameters and resource allocation.

Despite the commendable accomplishments of these optimizations, data processing perfor-
mance is fundamentally limited by memory inefficiencies inherent to the underlying programming
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systems. Zing (Azul 2014) is a commercial system developed by Azul that can lower the latency
for Java-based data-intensive applications by making larger in-memory indexes. Apache Flink and
Apache Spark support storing data in memory in a serialized form and include many “binary” ver-
sions of common data structures like hash tables. This article attempts to solve the memory prob-
lem by limiting the number of objects used to represent data records automatically, an approach
that is orthogonal to, and will provide benefit for, these existing optimization techniques.

There are a few other active projects that were developed in parallel with or after Facade. For
example, Tungsten (tun 2015) is an ongoing effort under the Spark umbrella that aims to explicitly
manage memory and eliminate the overhead of the JVM object model and GC. Broom (Gog et al.
2015) is a memory management technique that provides similar optimizations to C# programs.
Holly (Maas et al. 2016) attempts to provide global GC coordination to reduce the latency of man-
aged data-intensive systems. Our own work, ITask (Fang et al. 2015), aims to reduce memory
pressure by making data-parallel tasks interruptible. These efforts demonstrate the community’s
realization of the importance of efficient memory management for data-intensive applications and
will hopefully lead to the design of Big-Data-friendly runtime systems in the future.

Software Bloat Analysis. Software bloat analysis (Mitchell et al. 2006; Mitchell and Sevitsky 2007;
Xu and Rountev 2008; Shankar et al. 2008; Xu et al. 2009; Mitchell et al. 2009; Xu and Rountev 2010;
Xu et al. 2010a; Altman et al. 2010; Mitchell et al. 2010; Xu et al. 2010b; Xu et al. 2012; Xu 2012)
attempts to find, remove, and prevent performance problems due to inefficiencies in the code exe-
cution and the use of memory. Prior work (Mitchell et al. 2006; Mitchell and Sevitsky 2007) proposes
metrics to provide a performance assessment of the use of data structures. Their observation that
a large portion of the heap is not used to store data is also confirmed in our study. In addition to
measuring memory usage, our work proposes optimizations specifically targeting the problems
we found and our experimental results show that these optimizations are very effective.

Work by Dufour et al. (2008) uses a blended escape analysis to characterize and find excessive
use of temporary data structures. By approximating object lifetimes, the analysis has been shown
to be useful in classifying the usage of newly created objects in the problematic areas. Shankar
et al. propose Jolt (2008), an approach that makes aggressive method inlining decisions based on
the identification of regions that make extensive use of temporary objects. Work by Xu et al. (2009)
detects memory bloat by profiling copy activities, and their later work (Xu et al. 2010a) looks for
high-cost/low-benefit data structures to detect execution bloat. Our prior work (Bu et al. 2013)
analyzes bloat under the context of data-intensive applications, and other work (Nguyen et al.
2015) performs effective optimizations to remove bloat.

Region-Based Memory Management. Region-based memory management was first used in the
implementations of functional languages (Tofte and Talpin 1994; Aiken et al. 1995) such as Stan-
dard ML (Hallenberg et al. 2002), and then was extended to Prolog (Makholm 2000), C (Gay and
Aiken 1998, 2001; Grossman et al. 2002; Hicks et al. 2004), and real-time Java (Beebee and Rinard
2001; Kowshik et al. 2002; Boyapati et al. 2003). More recently, some mark-region hybrid methods
such as Immix (Blackburn and McKinley 2008) combine tracing GC with regions to improve GC
performance for Java. Although our iteration-based memory management is similar in spirit to
region-based memory management, the Facade execution model is novel and necessary to reduce
objects in Java applications without modifying a commercial JVM. There are many static analyses
(such as region types (Beebee and Rinard 2001; Boyapati et al. 2003)) developed to support region-
based memory management. Most of these analyses focus on the detection of region-allocatable
objects, assuming that (1) a new programming model will be used to allocate them and (2) there
already exists a modified runtime system (e.g., a new JVM) that supports region-based allocation.
On the contrary, Facade is a nonintrusive technique that compiles the program and allocates
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objects based on an existing JVM, without needing developers to write new programs as well as
any JVM modification.

Reducing the Number of Objects via Program Analysis. Object inlining (Dolby and Chien 2000;
Lhotak and Hendren 2005) is a technique that statically inlines objects in a data structure into its
root to reduce the number of pointers and headers. Free-Me (Guyer et al. 2006) adds compiler-
inserted frees to a GC-based system. Pool-based allocation proposed by Lattner (2005), Lattner
and Adve (2005), and Lattner et al. (2007) uses a context-sensitive pointer analysis to identify
objects that belong to a logical data structure and allocate them into the same pool to improve
locality. Design patterns (Gamma et al. 1995) such as Singleton and FlyWeight aim to reuse
objects. However, these techniques have limited usefulness—even if we can reuse data objects
across iterations, the number of heap objects in each iteration is not reduced and these objects still
need to be traversed frequently by the GC.

Shuf et al. (2002) propose a static technique that exploits prolific types—types that have large
numbers of instances—to enable aggressive optimizations and fast garbage collection. Objects with
prolific types are allocated in a prolific region, which is frequently scanned by the GC (analogous to
a nursery in a generation collector); objects with nonprolific types are allocated in a regular region,
which is less frequently scanned (analogous to an old generation). The insight is that the instances
of prolific types are usually temporary and short-lived. Facade is motivated by a completely oppo-
site observation: data classes have great numbers of objects, which are often long-lived; frequently
scanning those objects can create prohibitively high GC overhead. Hence, we allocate data records
in native memory without creating objects to represent them. Moreover, Facade adopts a new ex-
ecution model and does not require any profiling.

Object pooling is a well-known technique for reducing the number of objects. For example, Java 7
supports the use of thread pools to save thread instances. Our facade pool differs from traditional
object pooling in three important aspects. First, while they have the same goal of reducing objects,
they achieve the goal in completely different ways: Facade moves data objects out of the heap to
native memory, while object pooling recycles and reuses instances after they are no longer used
by the program. Second, the facade pool has a bound; we provide a guarantee that the number of
objects in the pool will not exceed the bound. On the contrary, object pooling does not provide
any bound guarantee. In fact, it will hurt performance if most of the objects from the pool cannot
be reused, because the pool will keep growing and consume a lot of memory. Finally, retrieving/
returning facades from/to the pool is automatically done by the compiler, while object pooling
depends on the developer’s insight—the developer has to know what objects have disjoint lifetimes
and write code explicitly to recycle them.

Resource Limits Systems. Starting with mechanisms as simple as the setrlimit system call, limits
have long been supported by POSIX-style operating systems. Recent work such as resource con-
tainers (Banga et al. 1999) provides a hierarchical mechanism for enforcing limits on resources,
especially the CPU. HiStar (Zeldovich et al. 2006) organizes space usage into a hierarchy of con-
tainers with quotas. Any object not reachable from the root container is garbage collected. At the
programming language level, a lot of work (Hawblitzel and von Eicken 2002; Back and Hsieh 2005)
has gone toward resource limits for Java. Facade can be thought of as a special resource limits
system that statically bounds object usage for each thread. However, Facade does not bound the
general memory usage, which still grows with the size of dataset.

PADS, Value Types, and Rust. Most of the existing efforts for language development focus on pro-
viding support for data representation (such as the PADS project (Fisher et al. 2006; Mandelbaum
et al. 2007)), rather than improving performance for data processing. Expanded types in Eiffel and
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value types in C# are used to declare data with simple structures. Value types can be stack allo-
cated or inlined into heap objects. While using value types to represent data items appears to be
a promising idea, its effectiveness is actually rather limited. For example, if data items are stack
allocated, they have limited scope and cannot easily flow across multiple functions. On the other
hand, always inlining data items into heap objects can significantly increase memory consump-
tion, especially when a data structure grows (e.g., resizing of a hash map) and two copies of the
data structure are needed simultaneously.

Moreover, these data items are no longer amenable to iteration-based memory management—
they cannot be released until their owner objects are reclaimed, leading to significant memory
inefficiencies. Rust (Mozilla 2014) is a systems programming language designed by Mozilla that al-
lows developers to specify what memory gets managed by the GC and managed manually. While
Rust may enable future development of scalable “Big Data” systems, the goal of Facade is to trans-
form a large number of existing programs written in Java without requiring developers to rewrite
programs.

7 CONCLUSION AND FUTURE WORK

Growing datasets require efficiency on all levels of the processing stack. This article studies the
problem of memory bloat caused by excessive object creation in a managed data processing sys-
tem and proposes a compiler and runtime Facade that achieves high efficiency by performing
a semantics-preserving transformation of the data path of a data-intensive program to statically
bound the number of heap objects representing data items. Our experimental results demonstrate
that the generated programs are more (time and memory) efficient and scalable than their object-
based counterparts.

One interesting direction of future work is to adapt Facade to Scala, which powers the entire
Spark framework. In fact, all techniques discussed in this article can be conceptually applied to
optimize Scala programs as well. One challenge is that there are many compiler-generated objects
in Scala that do not exist in Java; leaving all of them in the heap would still cause large GC overhead.
We need to modify the Scala compiler and develop techniques to identify those objects for native
allocation.

Since Facade can also reduce the memory footprint of a program, the transformed program
may likely need fewer machines to process a dataset compared to the original program. Hence, it
is interesting to conduct additional experiments to understand the resource reductions that can be
achieved by Facade.
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