
Interruptible Tasks: Treating Memory Pressure as
Interrupts for Highly Scalable Data-Parallel Programs

Lu Fang1, Khanh Nguyen1, Guoqing Xu1, Brian Demsky1, and Shan Lu2

1University of California, Irvine
2University of Chicago

Interruptible Tasks: Treating Memory Pressure as
Interrupts for Highly Scalable Data-Parallel Programs

Lu Fang1, Khanh Nguyen1, Guoqing Xu1, Brian Demsky1, and Shan Lu2

1University of California, Irvine
2University of Chicago

Motivation

•Data-parallel system
– Input data is divided into independent partitions
– Many popular big data systems

•A common problem: memory pressure on individual nodes
– Programs push the heap limit soon, and systems struggle for memory
– Cause huge GC effort, badly hurt performance
– Programs crash because of OutOfMemoryError
– Many cases can be found on websites, such as StackOverflow
– We have collected 126 problems by searching “out of memory” and “data parallel”

•Root causes
– Hot keys
– Large intermediate results

•Existing solutions
– Configuration tuning
– Skew fixing
– Cluster-wide resource manager

We need a systematic solution for memory pressure on single nodes

Key Insights of Our Solution – ITask

•Main idea: treat memory pressure as interrupts
– Data-parallel tasks can be interrupted upon memory pressure
– An interrupted task can be reactivated when memory pressure goes away

•Original execution vs ITask execution

M
em

or
y 

co
ns

um
pt

io
n

Execution time

Heap size
OutOfMemoryError point

Long and useless GC

Fig. 1: Original data-parallel program suffers from memory pressure

M
em

or
y 

co
ns

um
pt

io
n

Execution time

Heap size

Interrupt

Long and useless GC

Memory reclaimed
Interrupt

Reactivate

No pressure No pressure

Fig. 2: ITask can help data-parallel programs survive memory pressure

•Novelties of ITask
– ITask works proactively in response to memory pressure
– ITask uses a stage approach to lower its memory consumption
– ITask is easy to apply on existing frameworks

System Design

•Challenges
– How to lower memory usage when a task is interrupted
– When to interrupt a task
– How to interrupt a task

Our approach consists of a programming model and a runtime system

•Programming model
– API-based
– Provide interrupt handling abstractions

• ITask runtime system
– Monitor resource condition
– Manage input and output data for ITasks
– Schedule ITasks

Cluster

Distributed Runtime

activate

hold

Node Running ITask
Instance

Deserialized
Data Partition

Serialized Data
Partition

ITask R
untim

e S
ystem

 (IR
S

)

process

ITask 
Scheduler

interrupt

Inactive ITask
Instance

ITask
Scheduler

ITask
Scheduler

Fig. 3: The architecture of ITask runtime system

Evaluation

•Environments
– We have applied ITask on two frameworks: Hadoop 2.6.0 and Hyracks 0.2.14
– An 11-node Amazon EC2 cluster
∗Each machine: 8 cores, 15 GB memory, 80×2 SSD RAID 0

•Evaluation on Hadoop
– Goal: show the effectiveness of ITask on real-world problems
– Benchmarks: five real-world programs collected from StackOverflow
∗Original version: crash because of OutOfMemoryError
∗Rfix version: apply the fixes recommended on the website

– ITask helps all programs survive memory pressure
– On average, ITask is 62.5% faster than Rfix

•Evaluation on Hyracks
– Goal: show the improvements of ITask on performance and scalability
– Benchmarks: five already hand-optimized applications from Hyracks’ code repository
– On average, ITask is 34.4% faster than original version
– On average, ITask versions scale to 6.3× larger datasets

Conclusions

• ITask is the first systematic approach
– Help data-parallel tasks survive memory pressure

•Design: a programming model + a runtime system
– Non-intrusive, easy to apply on existing systems
– Easy to use

•Evaluation shows the effectiveness of ITask system
– With ITask, real-world data-parallel programs survive memory pressure
– ITask provides better performance than manually tuning configurations
– ITask helps data-parallel tasks scale to larger datasets


