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Abstract
A calling context is an important piece of information used
widely to help developers understand program executions
(e.g., for debugging). While calling contexts offer useful con-
trol information, information regarding data involved in a
bug (e.g., what data structure holds a leaking object), in
many cases, can bring developers closer to the bug’s root
cause. Such data information, often exhibited as heap refer-
ence paths, has already been needed by many tools.
The only way for a dynamic analysis to record complete

reference paths is to perform heap dumping, which incurs
huge runtime overhead and renders the analysis impractical.
This paper presents a novel static analysis that can precisely
infer, from a calling context of a method that contains a use
(e.g., read or write) of an object, the heap reference paths
leading to the object at the time the use occurs. Since calling
context recording is much less expensive, our technique
provides benefits for all dynamic techniques that need heap
information, significantly reducing their overhead.

CCS Concepts • Software and its engineering→Auto-
mated static analysis; Dynamic analysis;
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1 Introduction
Context information is critical for program understanding
and bug diagnosis. The current development practices, es-
pecially for object-oriented languages, decompose the func-
tionality into small methods and the data into multi-layer
structures. For any dynamic analysis that aims to find bugs
or other runtime problems, it is extremely helpful to report
not only important events (e.g., bugs) but also the contexts
under which they occur. Two major kinds of contexts used in
practice are calling contexts (i.e., abstractions of call stacks)
and reference contexts (i.e., abstractions of heap reachability).
Calling contexts are commonly used in language imple-

mentations and dynamic analyses — for example, they are
often reported together with exceptions or other types of
events to help developers make better sense of the runtime
stack when an event occurs. Calling contexts are relatively
cheap to collect. The past decade has seen a proliferation
of efficient calling context profiling techniques, including
stack walking [34], context tree profiling [54], or context
encoding [9, 19, 39] and decoding [7, 42]. For instance, prob-
abilistic context encoding (PCC) [9] adds only 3% overhead
to a JVM, making it deployable for production systems.

Often times postmortem diagnosis can be made much eas-
ier with the reference context of a bug. A reference context
encodes the data information of the objects involved in the
bug, revealing the logical connections among these objects.
For instance, memory leak detectors typically report leaking
objects only with their calling contexts [1, 8, 21, 25, 43, 44].
To understand why an object leaks, however, developers of-
ten need to trace heap accesses themselves to identify the
problematic data structure that holds references to the leak-
ing object. It is hard to develop a fix without understanding
where these unnecessary references are located.

For race detectors [7, 11], the reference context for a racy
object o identifies objects that directly and transitively refer-
ence o, immediately revealing the root cause if the race is due
to synchronization bugs in o’s owning class — e.g., a synchro-
nized Hashtable should be used in a multi-threaded environ-
ment as apposed to an unsynchronized HashMap. Moreover,
commercial diagnosis tools such as IBM WAIT [15] — pre-
viously known as Yeti [23] — and YourKit [48] all need to
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Figure 1.Overhead comparisons between call stack profiling
in CCU [14] (CCU-vanilla), CCU that dumps the calling con-
texts of the top 20 stale objects (CCU-dump), and CCU that
dumps the whole heap (Heap-dump); all of the DaCapo [6]
programs were run on a FastAdaptive build of Jikes RVM
3.1.1 configured with a generational MarkSweep GC; the
heap size given for each program was twice as large as the
minimum heap size required for the program.

analyze references (derived from heap dumps) to provide
insights to performance problems.

Obtaining reference contexts is notoriously difficult since
objects do not carry backward pointers. Existing profiling
techniques that piggyback on the garbage collector (GC) can
only track forward references. They cannot report the refer-
ence paths leading to an object of interest. The only way to
obtain the complete set of reference paths for the object is
taking heap snapshots. While production JVMs provide func-
tionality to perform heap dumping, writing content of a JVM
heap of size several to dozens of gigabytes to disk results in
extremely slow executions. This approach is also inefficient
because a client usually needs only a very small portion of
the heap (e.g., containing the reference paths leading to a
number of interesting objects) for problem diagnosis.
We use a concrete example to compare the overhead be-

tween heap dumping and calling context profiling. Specifi-
cally, we consider calling context uptree (CCU) [14], which
is a JVM-based technique for efficiently profiling calling con-
texts. The CCU implementation also contains a memory leak
detector [8] and a data race detector [7]. Figure 1 shows
an overhead comparison between the vanilla CCU that pro-
files calling contexts for each object (CCU-vanilla), CCU that
dumps the calling contexts for 20 objects with the highest
staleness (CCU-dump), as well as a modified version of it
that dumps the heap at the end of each execution to col-
lect reference paths for leaking objects (Heap-dump). Each
bar represents the incurred slowdown (in times) compared
against the plain execution in JikesRVM 3.1.1. Clearly, heap
dumping introduces an extremely large slowdown (i.e., 12
– 7867×, with a GeoMean of 181×), while the overhead of
profiling and dumping calling contexts is much lower (i.e.,
1.8× and 3.6×, respectively).

Our Contributions.We propose a static analysis that can
precisely infer the heap reference paths (reference contexts)
of an event object from a call stack (calling context) captured
by a dynamic analysis, thereby providing immediate benefit
to all dynamic analyses and bug finding tools that require
reference path information but could not obtain it due to the
prohibitively high profiling cost. At the core of our technique
is a translation framework that makes a static connection
between call stacks and reference paths. Our work is inspired
by recent advances in the context-free language (CFL) reach-
ability formulation of object flow [37, 45, 50], which makes
an interplay between method calls (i.e., represented by a
balanced-parenthesis language M) and heap accesses (i.e.,
represented by a balanced-bracket language H).

Our translation framework extends the languagesM and
H, respectively, to M̃ and H̃, allowing them to contain unbal-
anced parentheses and brackets under certain circumstances.
Given a calling context c , an object o of interest recorded by a
dynamic analysis, and a variablev that points to object o, our
static analysis computes a set of potential reference chains
that end at o at the time c is recorded. We do so by solving
M̃∩H̃-reachability fromv to each object o′, which directly or
transitively references o, such that (1) the string of the unbal-
anced method entries/exits in language M̃ on each path from
v to o′ satisfies a prefix constraint w.r.t. the collected calling
context c and (2) the string of the unbalanced field accesses in
H̃ on the same path satisfies the unbalanced constraint w.r.t.
a user-specified number n of unbalanced brackets. These n
unbalanced brackets of field accesses can be used to derive
reference paths of length up to n for o.
We refer to our formulation as constraint-guided (CG)

CFL-reachability. We have implemented this technique in
Soot [35] and conducted extensive experiments with a real
leak detector [8] and data race detector [7] implemented in
CCU [14] on the DaCapo benchmark set [6]. For the DaCapo
programs, our translation takes, an average, 13.7 seconds to
compute reference contexts for each query, while executing a
programwith a heap dump typically can take several hours.
Moreover, our algorithm produces precise reference contexts
compared against the actual reference paths captured by
heap dumps — the statically inferred reference paths are only
2%more and 30% shorter than their dynamic counterparts.
Finally, we have manually investigated 20 leak reports and
20 data race reports for each program. With the help of the
reported reference contexts, we were able to quickly find the
root causes and develop fixes for most of them (Section 6.2).

2 Motivating Example

Figure 2 shows a real example that illustrates the importance
of having reference paths in a leak report. The report is
generated by a well-known leak detector Sleigh [8]. Sleigh
tracks object staleness (i.e., time since an object’s last use).
When the staleness of an object exceeds a threshold, Sleigh



1 void runCompare(ISelection s){

2 ResourceCompareInput input = new ResourceCompareInput(s);//o2
3 openCompareEditorOnPage(input, fWorkbenchPage);

4 useValue(input);

5 ... //never use input again

6 }

7 void openCompareEditorOnPage(CompareEditorInput in,

8 IWorkbenchPage p){

9 NavigationHistory info = new NavigationHistory(...);//o9
10 info.add(in); //input is added into an ArrayList in info

11 Editor.addHistoryItem(info); // info is cached

12 }

13 void useValue(ResourceCompareInput in){

14 p = in.value; ...//last use site of o2
15 }

16
17 class NavigationHistory{

18 void add(Object obj){

19 Object[] tmp = this.array;
20 tmp[...] = obj;

21 }

22 }

(a) Simplified code snippet.

input2

info9

this19 tmp19 obj18

o9

S1 S2 S3

S4in7 o2 S13

in13

call3 call4

call10 call10

array arr_elm

(b) Interprocedural symbolic points-to graph for the program in (a);
variables (namei ) and objects (oi ) are named based on line numbers
i while symbolic nodes Sj are named sequentially on integer j.

Figure 2. A real memory leak example from Eclipse that
shows the importance of reporting heap reference paths;
inverse edges in the SPG are omitted.

reports its last use site (i.e., a read or write) together with
the calling context under which this use occurs.
The example is a significantly simplified version of the

Eclipse compare plugin, which leaks memory when repeat-
edly comparing two zip files. Figure 2a shows the code snip-
pet. Method runCompare() is the entry point of the plugin
that takes as input the files selected by an Eclipse user. It first
creates a ResourceCompareInput object to wrap the files and
calls method openCompareEditorOnPage() to open the com-
pare editor. After line 4, object o2 (created at line 2) is never
used again, and is reported as a memory leak. In this case,
Sleigh reports that the last use site of object o2 is line 14, and
the calling context for this use is runCompare()→useValue().
This calling context is not particularly useful because

it does not explain where the leaking object is held and
why the reference is not cleared. Furthermore, method
openCompareEditorOnPage() is defined in a different (UI) plu-
gin, which is used to create GUI gadgets for displaying com-
parison results. Object o2 flows into this plugin and gets

cached there. However, following the reported calling con-
text, the developer may focus her debugging effort on in-
specting the code of plugin compare (as all the methods on
the call chain are in compare), which would never bring her
to the actual cause.

The root cause can be quickly uncovered if the following
reference context is reported: o2 is appended to an array
(accessed at line 18), which is, in turn, referenced by the
NavigationHistory object, created at line 9 in the UI plugin.
This reference path pinpoints the problematic references: the
NavigationHistory object is the root that transitively holds
the leaking object and, hence, the leak should be fixed by
removing the object from NavigationHistory.
We can see that identifying the root cause of a runtime

problem is often non-trivial with only calling context infor-
mation available. Our translation framework overcomes this
challenge by translating profiled calling contexts to refer-
ence contexts. Our translation algorithm operates on a graph
representation of the program. While our formulation itself
is independent of the underlying graph representation, we
choose the symbolic points-to graph (SPG) [45, 46] to imple-
ment our algorithm for the reasons detailed in Section 5.1.
SPG provides a sound and precise approximation of the

runtime object flow. Figure 2b depicts the SPG representation
of our example. An SPG for a method is a locally resolved
points-to graph where symbolic nodes are introduced to rep-
resent objects that are not visible in the method. The graph
is bidirected as a prerequisite for the CFL-reachability-based
pointer analysis [28, 37]. In Figure 2b, circles represent vari-
ables (named with the actual variable names followed by line
numbers) and boxes represent (1) allocation sites (named
with o plus line numbers) and (2) symbolic objects (named
with S plus an integer that sequentially grows). Edges with-
out annotations are points-to edges from variables to object-
s/symbolic nodes. Annotated edges represent calls/returns
(annotated with call site IDs) or field points-to relationships
(annotated with field names).

For example, node in13 corresponds to variable in defined
at line 13, which is an alias of node input2. Edge o2

call4
−−−→ S13

corresponds to the collected calling context that involves the
call site at line 4. Symbolic node S13 is a placeholder of object
o2 that variable in (node in13) points to at its last use site
line 14. This symbolic node is introduced because SPGs are
constructed intraprocedurally — o2 is not visible when the
SPG for method openCompareEditorOnPage() is constructed.
SPGs for different methods are connected trivially at call
sites through formal-actual parameter pairing and return
values to form an interprocedural SPG (ISPG).

ISPG is used in [46] to quickly answer on-demand alias
queries. In particular, a memory-alias (MemAlias) relation is
defined over the set of symbolic and object nodes – given
two symbolic nodes or one symbolic and one object node,
they are memory aliases if there exists a MemAlias-path on



the ISPG between them. This formulation has been used
by many techniques [36, 46, 50] for answering alias queries.
Section 5 discusses more details of the SPG and why it is
particularly suitable for our algorithm.

Given a user-specified length parameter n = 2, our trans-
lation algorithm finds a path on the ISPG from node in13 (the
variable accessed at the last use site) to node o9 (the container
object), based on the last use statement at line 14 and the
calling context call4 profiled by the memory leak detector.
The sequence of the labels on this path is finally converted
to a reference context of length 2: o9

array
−−−−→ oarray

arr_elm
−−−−−→ o2,

where oarray is the allocation site (not shown in the figure)
for the array accessed at line 19. This reference path immedi-
ately reveals that the problematic NavigationHistory object
at line 9 is the root cause of the leak.

3 Preliminaries
This section defines the problem of static context translation.
Here we consider a Java-like language while the technique
can easily generalize to other object-oriented languages.

3.1 Calling Context and Reference Context

Our context translation takes as input (1) an event collected
by a dynamic analysis that contains either a store or a load of
a heap object and (2) the call stack under which the event oc-
curs. While practical dynamic analysis may report a variety
of information, most runtime problems (e.g., bugs or perfor-
mance issues) have strong correlation with heap stores or
loads. Moreover, stores and loads are the building blocks of
high-level semantic events such as data races. In this section,
we first describe the semantic domains and then proceed to
discussing our problem formulation.
O: Domain of abstract objects (i.e., allocation sites),
V: Domain of variable identifiers,
F: Domain of instance field identifiers,
M: Domain of methods,
C: Domain of call sites,
Inv ∈ C ×M: Relation of call sites and their target methods,
Con ∈ M × C: Relation of methods and their contained call sites.

An event is a quintuple e = ⟨o,v, f , stmt, op⟩, where o ∈ O,
v ∈ V is a variable that points to o, f ∈ F is the concerned
field of o, stmt is a heap access statement in the form of
a = v . f or v . f = b, and op ∈ {r ,w} indicates whether it is a
read (heap load) or a write (heap store). In other words, v is
the variable accessed in the load/store statement stmt and o is
the objectv points to. In different dynamic analyses, an event
may carry different semantics. For example, for a data race
detector, an event is a load/store that participates into a race
condition, while a memory leak detector such as Sleigh [8]
reports the last use site (a load or a store) of a leaking object
as an event. For both detectors, o is the allocation site of the
object accessed, also reported for problem diagnosis. Using
pointsto(v) to denote the set of objects v points to, we define
the following two types of contexts.

Definition 3.1 (Calling Context). A calling context
is a vector of method-call-site pairs in the form of
⟨(m1, c1), (m2, c2), . . . , (mn ,⊥)⟩, where mn ∈ M is the last
method in the vector,mi ∈ M, ci ∈ C, (ci ,mi+1) ∈ Inv, and
(mi , ci ) ∈ Con for all i ∈ [1,n).

Definition 3.2 (Reference Context). A reference con-
text is a vector of object-field pairs in the form of
⟨(o1, f1), (o2, f2), . . . , (on , ∗)⟩, where on represents the last
object in the vector, oi ∈ O and fi ∈ F for all i ∈ [1,n).

Each reference relationship oi
fi
−→ oi+1 is induced by a

heap store vi . f = vi+1 or a heap load vi+1 = vi . f , where
oi ∈ pointsto(vi ) and oi+1 ∈ pointsto(vi+1).

For simplicity, we will use the chain-based forms to rep-
resent a calling context (m1

c1
−→ m2

c2
−→ . . .

cn−1
−−−→ mn) and a

reference context (o1
f1
−→ o2

f2
−→ . . .

fn−1
−−−→ on ).

Example 3.3 (Calling and Reference Contexts). Consider
Figure 2 again. We omit the calling context for method
runCompare() for brevity. For the last use site of object
o2 at line 14, we have a calling context runCompare()

c4
−→

useValue(). The reference context for o2 is o9
array
−−−−→

oarray
arr_elm
−−−−−→ o2. Both the calling and reference contexts are

closely related to the underlying symbolic points-to graph.
For instance, the reference context corresponds to a path
pr : S1

array
−−−−→ S2

arr_elm
−−−−−→ S3 in Figure 2b, where S1 and S2 are

the symbolic objects pointed to by the variable nodes this19
and tmp19, respectively. The calling context corresponds to a

path o2
call4
−−−−→ S13. The goal of our analysis is to find all such

reference pathspr using (1) the variable accessed in the event
(i.e., in13) as the starting point and (2) the calling context as
a constraint (i.e., the search for pr has to go through edge
o2

call4
−−−−→ S13).

3.2 Problem Statement

Given an event e = ⟨o,v, f , stmt, op⟩ of interest, a dynamic
analysis collects a calling context c such that the last method
mn ∈ c contains the statement stmt ∈ e . In most cases, the
calling context is a full stack trace starting from main. We
represent event e and its corresponding calling context c as
a calling-context-event (CE) pair (c, e). Similarly, we define a
reference-context-event (RE) pair (p, e) such that the object o
accessed by statement stmt ∈ e is the last object on ∈ the ref-
erence path p. We say a CE pair (c, e) is consistent with a RE
pair (p, e) iff the sequence of method calls/returns executed
to generate the reference path p matches the call stack c . This
matching essentially boils down to checking a string prefix
relationship, which will be discussed in Section 4. A consis-
tent RE pair abstracts a dynamic heap reference path leading
to the object in e at the moment e is captured. Our goal is
thus to statically find all such RE pairs that are consistent
with a given (c, e) captured by the dynamic analysis.



Definition 3.4 (CR(n) Translation). Given a CE pair ce =
(c, e) recorded by a dynamic analysis as well as a user-defined
length parameter n, CR(n) generates a set SP of RE pairs such
that for each re = (p, e) ∈ SP , (1) the length of the reference
context p ∈ re is ≤ n, and (2) re is consistent with ce.

Note that for any n ≥ 1, CR(n) is a sound abstraction of the
set of runtime reference paths for e , although the translated
reference paths in CR(n) may not be complete — they may
only be suffixes of the actual ones. It is clear that the larger n
is, the more complete CR(n) is, and the more work the static
analysis needs to do to find additional reference edges.

Example 3.5 (CR(n) Translation). Consider the example in
Figure 2 again. The memory leak detector Sleigh reports a
CE pair (c, e) where c = runCompare()

c4
−→ useValue() and

e = ⟨o2, in13, value, . . . p = in.value, r ⟩. Using arr_elm to
represent a special array element field, a CR(1) translation
returns a reference context oarray

arr_elm
−−−−−→ o2, which does not

contain much information since oarray is just a generic object
array. When increasing n to 2, the reference context p =
o9

array
−−−−→ oarray

arr_elm
−−−−−→ o2 generated by a CR(2) translation

becomes muchmore useful, because it reveals that the logical
data structure rooted at o9 causes the leak. Moreover, from
Figure 2b, we can see that the execution sequence of the
method calls/returns that generates this reference path is
. . .

call3
−−−→ . . .

call10
−−−−→ . . .

return10
−−−−−→ . . .

return3
−−−−−→ . . .

call4
−−−→ . . .. Since

method calls and returns corresponding to the same site (e.g.,
call10 and return10) cancel out each other (as they represent
finished invocations), the sequence is reduced to call4, which
is the same as the captured call stack. Therefore, the derived
reference path is consistent with the CE pair.

4 Formulation of Context Translation
We model the calling and reference contexts using the
popular context-free language (CFL) reachability frame-
work [28, 31]. This section discusses the constraint-guided
CFL-reachability problem that extends the traditional CFL-
reachability to express the CR(n) translation.

4.1 CFL-Reachability Formulation of Object Flow

A variety of program analyses can be formulated as CFL-
reachability problems [5, 16, 22, 28, 40]. CFL-reachability is
an extension of standard graph reachability that allows for
filtering of uninteresting paths. A CFL-reachability problem
instance contains a CFL L and an edge-labeled digraph G.
Specifically, the CFL L formulates the analysis problem and
the graph G provides an abstraction of the program under
analysis. Every edge in G is labeled by a symbol from L’s
alphabet. Each path l inG has a path string sl by concatenat-
ing the edge labels along the path. A path l is defined as an
L-path iff its path string sl belongs to L. We say that node v
is L-reachable from u if there exists an L-path from u to v .

Of particular interest are recent attempts that formulate
object flow as a CFL-reachability problem [37, 45, 46, 53] for
precise and efficient points-to and alias analyses. A points-
to analysis that aims to find all objects o ∈ O to which a
variable v ∈ V may point can be formulated as a single-
source L-reachability problem, which determines each such
o that is L-reachable from node v . To ensure high analysis
precision, this formulation models (1) context sensitivity via
method entries and exits (i.e., the languageM), and (2) heap
accesses via object field reads and writes (i.e., the language
H). This section gives a gentle introduction to our constraint-
guided CFL-reachability formulation for CR(n) translation.
Modeling Method Calls and Heap Accesses. Let the al-
phabets ΣM and ΣH represent a set of parentheses and a
set of brackets, respectively. We use alphabet ΣM to denote
method calls and alphabet ΣH to denote heap accesses. Srid-
haran et al. [37] employ the following treatments to model a
context-sensitive object flow:
• Each method call entryi is treated as “(i ” in alphabet
ΣM , where i is the ID of a call site. Similarly, each
method return exiti is treated as “)i ” in alphabet ΣM .
• Each heap load of field f is treated as “]f ” and each
heap store to f is treated as “[f ” in alphabet ΣH .

Given a string s over the alphabet Σ = ΣM ∪ ΣH , the M-
component of s is a string transformed by removing all brack-
ets in s . Similarly, removing all parentheses in s obtains the
H -component of s .
Method calls and heap accesses are modeled using the

two CFLs M and H over Σ = ΣH ∪ ΣM , respectively. The
grammars forM and H are specified using the following pro-
ductions. Specifically, languageM generates a string of well-
balanced parentheses to model “realizable call paths” [31],
shown below as a nonterminal BC. Similarly, nonterminal
BF generates a string of well-balanced brackets to model
“balanced field accesses”.

LanguageM : BC → BC BC | (i BC )i | [f | ]f | ϵ,

Language H : BF → BF BF | [f BF ]f | (i | )i | ϵ .

LanguageM guarantees that all method calls and returns
are properly matched on an object flow, while language H
ensures that a retrieval from an object field would obtain a
value only if the value has been written into the same field.
Note that the H-reachability formulation also introduces
the inverse store and load accesses to soundly approximate
object aliasing [37, 38]. That is, for heap access edges of the

form ox
store(f )
−−−−−→ oy and ox

load(f )
−−−−−→ oy , there exist inverse

edges oy
load(f )
−−−−−→ ox and oy

store(f )
−−−−−→ ox , respectively. Similarly,

for call/return edges of the form ox
calli
−−−→ oy and ox

returni
−−−−−→ oy ,

their inverse edges oy
returni
−−−−−→ ox and oy

calli
−−−→ ox exist as well.

In the context of SPG [45], the treatment of open (“[”)
and close (“]”) brackets is slightly different than in [37]. As



discussed earlier, in an SPG, loads of the form a = b . f and
stores of the form b . f = a are both abstracted by a single

points-to edge Sb
f
−→ Sa . Hence, the question of whether

two variables are pointer aliases reduces to understanding
whether the symbolic nodes or objects they point to are
memory aliases. The MemAlias formulation introduced in [45]
is the same as the H-reachability except that the close and
open brackets represent a generic field points-to edge f and
its inverse edge f , respectively. Since the graph is bidirected,

if there is an edge Sb
f
−→ Sa , the inverse edge Sa

f
−→ Sb exists

automatically.

Example 4.1 (Flow-Insensitive Alias Analysis via
H-Reachability). We consider the following Java-like
program: “a = b.f; b = c.g; c.g = e; e.f = h;”.
Under the SPG, they generate four points-to edges

Sb
f
−→ Sa , Sc

д
−→ Sb , Sc

д
−→ Se , and Se

f
−→ Sh . Treating

f
−→ and

д
−→ as close brackets,

f
−→ and

д
−→ as open brackets, there exists

a MemAlias-path from Sh to Sa : Sh
[f
−→ Se

[д
−→ Sc

]д
−→ Sb

]f
−→ Sa ,

with balanced open and close brackets. This indicates that
Sh and Sa are memory aliases, and thus the variables a and
h are pointer aliases.

Language M ∩ H for Object Flow. In the literature, static
analyses [37, 45, 46] typically use the language M ∩ H
to model the context-sensitive object flow, ensuring the
well-balanced property from bothM and H. Unfortunately,
CFLs are not closed under intersection [51]. In addition, the
precise M ∩ H-reachability problem is shown to be unde-
cidable [29]. In practice, we often assume the absence of
recursive calls [45, 46] (i.e., recursion is handled context-
insensitively). The number of open parentheses in a string is
bounded, and thus languageM becomes a regular language.
Since CFLs are closed under intersection with a regular lan-
guage, the resulting languageM∩H is still a CFL. Therefore,
the M ∩ H-reachability is an instance of CFL-reachability
and a sound approximation of object flow.

4.2 Exploiting Unbalanced Parentheses/Brackets

For a CR(n) translation, requiring balanced method calls
and heap accesses is often too strict. To illustrate, consider
the aforementioned path l (i.e., in13 → S13 → o2

call3
−−−→

S4 → S3 → S2 → S1 → o9) from the variable node in13
(i.e., the variable contained in the last use site) to the object
node o9 (i.e., the container object) in Figure 2b. As discussed
in Section 2, this path contains the reference context for
the object o2 and is what we intend to find. The M- and
H -components of the label sequence on this path are, re-
spectively, “)4 (3 (10 )10” and “[arr_elm [array”, where both the
parentheses and the brackets are unbalanced. Intuitively, the
unbalanced parentheses (i.e., method calls/returns) on the
path reveal (part of) the call stack while the unbalanced

UBC→ DC | UC | UDC

DC→ BC DC | (i DC | [f | ]f | ϵ

UC→ BC UC | )i UC | [f | ]f | ϵ

UDC→ UC DC

BC→ BC BC | (i BC )i | [f | ]f | ϵ

(a) Grammar of M̃.

UBF→ BF UBF | [f UBF

| (i | )i | ϵ

BF→ BF BF | [f BF ]f

| (i | )i | ϵ

(b) Grammar of H̃.

Figure 3. Languages M̃ and H̃ for modeling unbalanced
method calls and heap accesses; the nonterminals BC and BF
generate the well-balanced languageM and H, respectively.

brackets reveal the reference path. In this section, we ex-
ploit the unbalancedness in parentheses/brackets to perform
context translation.
Modeling Unbalanced Method Calls/Returns. Here we
first discuss how to model the unbalancedness in method
calls/returns on a regular object flow. Consider an event
e = ⟨o,v, f , stmt, op⟩ that CR(n) takes as input. The object
and variable of interest in the event are o and v , respectively,
andv points to o. Suppose o andv are in the methodsMo and
Mv , respectively. In terms of their relationship on the call
graph, there are three possible scenarios: (1)Mo directly or
transitively callsMv ; (2)Mv directly or transitively callsMo ;
and (3)Mo andMv are called directly or transitively by an-
other methodMt . Table 1 depicts these three scenarios, their
examples, and the grammar rules that are used to capture
them. We discuss these rules as follows.
(a) Downward context (DC). In this case,Mo invokesMv .
ADC-path indicates that an object o flows down to a variable
v in a callee method. The string on the path representing
the flow contains several unmatched open parentheses. There-
fore, we construct a new nonterminal DC by introducing
open parentheses (i into nonterminal BC, which represents
balanced parentheses.
(b) Upward context (UC). In this case, Mv invokes Mo . A
UC-path indicates that an object o flows up to a variablev in
its caller method. The path string contains several unmatched
close parentheses. Similarly, we construct a new nonterminal
UC by adding additional close parentheses )i into BC.
(c) Up-downward context (UDC). In this case,Mo andMv
are called by another methodMt . A UDC-path indicates that
an object o first flows up to its callerMt and then flows down
fromMt to a callee ofMt . We construct a new nonterminal
UDC by combining UC and DC.

Putting them all together, the unbalancedness in parenthe-
ses required by CR(n) can be described using a CFL M̃, shown
in Figure 3a, over the alphabet Σ = ΣM ∪ ΣH . The main rule
starts with a nonterminal UBC, which is a union of DC, UC,
and UDC. Note that we do not need a down-upward context
(DUC) between o and v . If o in methodMo first flows down
to a callee, it has to come back up through the same path to
methodMo orMv . Therefore, the path would simply reduce
to a UC or DC path.



Downward context (DC) Upward context (UC) Up-downward context (UDC)
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call

call
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)1
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)4
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)1 (2 )2

)3 (4

(5

Grammar rules
DC→ BC DC | (i DC

| [f | ]f | ϵ
UC→ BC UC | )i UC

| [f | ]f | ϵ
UDC→ UC DC

Table 1. Modeling unbalanced calling contexts.

While practical points-to [37] and alias [46] analyses of-
ten allow this unbalancedness [18] in their implementations
for context sensitivity, our work is the first attempt to for-
mally explore the properties of M̃. Furthermore, none of the
existing techniques have explored the possibility of extend-
ing H to handle unbalanced brackets, primarily because, in
the context of points-to and alias modeling, heap accesses
are required to be balanced. In a CR(n) translation, on the
contrary, allowing unbalanced brackets in H exposes heap
access paths, providing insights for context translation.
Modeling Unbalanced Heap Accesses. Consider Exam-
ple 4.1 again. Suppose that object oh (the actual object h
points to) is the leaking object reported by a dynamic analysis
in a CE pair and there is no calling context reported. A CR(2)

translation produces a reference context oc
д
−→ oe

f
−→ oh

for oh . This reference path is actually generated by the two
heap stores c .д = e and e . f = h. In any string accepted by
language H, these stores are open brackets that must have
matched closed brackets (loads) because H is designed to
model points-to/aliasing relations that require all brackets
to be balanced. For CR(n), however, we need a different lan-
guage that can expose these unmatched brackets, which are
the building blocks of the reference paths to be uncovered.
For this purpose, we extend language H to H̃ over the

same alphabet Σ = ΣM ∪ ΣH . Figure 3b gives the production
rules of language H̃. Note that H̃ allows only unmatched open
brackets rather than unmatched close brackets, because find-
ing objects that reference an event objecto requires “climbing
up” the reference ladder. This corresponds to traversing in-
verse field points-to edges under the SPG representation. For
example, the H -component of the aforementioned path l is
“[arr_elm [array”, which contains only open brackets. To expose
unmatched open brackets, we introduce a nonterminal UBF
that represents the “unbalanced field accesses”. Note that
UBF ∈ H̃ in Figure 3b is essentially the same as nonterminal
UC ∈ M̃ in Figure 3a if we apply a proper bijection between
parentheses and brackets.
Reduced Form of Language M̃ ∩ H̃. A CR(n) translation
leverages language M̃ ∩ H̃ to model unbalanced method
calls and heap accesses. However, this language is a static
modeling of calling and reference contexts. For example, a
string ∈ M̃ represents a trace of method executions before

reaching the event, with balanced parentheses representing
invocations that have finished and unmatched parentheses
representing method invocations still on the stack. The call-
ing context (i.e., stack trace) obtained by a dynamic analysis,
by contrast, only contains on-stack methods. To illustrate,
consider the calling context of the heap load at line 13 in
Figure 2a. Before useValue() is invoked at line 4, method
openCompareEditorOnPage() at line 3 has been called and re-
turned. The call stack captured by the dynamic analysis is
“)4”, while the call trace (∈ M̃) on the path from in13 to o2
is “)4 (3 )3”. In this paper, we consider each captured call-
ing context as a sequence of close parentheses starting at
the event-containing method. SinceG is a bidirected graph,
treating it as a sequence of open parentheses would also
work (i.e., but needs a symmetric handling).

To bridge the gap between the static and dynamic repre-
sentations of a call trace, we introduce the reduced form of a
string in M̃ ∩ H̃. Formally, let s be a string over the alphabet
Σ = ΣM ∪ΣH . The reduced string Rs of s is obtained by recur-
sively removing matched parentheses in itsM-component
as well as matched brackets in its H -component. For in-
stance, we have R“)1[3(2)2]3(4” = R“)1[3]3(4” = R“)1(4” = “)1(4”. It
is straightforward to see the reduced string Rs of any s in
languageM ∩ H is “ϵ”.

4.3 Constraint-Guided CFL

This section presents our constraint-guided CFL-reachability
formulation of CR(n) translation. Our formulation is based
on M̃ ∩ H̃-reachability. Since CFLs are not closed under in-
tersection [51], researchers often assume the absence of re-
cursive calls [45, 46] in practice (i.e., recursion is handled
context-insensitively). We use the same handling here — as
the number of open parentheses in a string is bounded, lan-
guage M̃ becomes a regular language and thus the language
M̃ ∩ H̃ is indeed a CFL. Here we first focus on the formu-
lation of our CR translation and then briefly discuss how
constraint-guided CFL-reachability can solve other analysis
problems.
For CR(n), our constraint-guided M̃ ∩ H̃-reachability in-

troduces two types of constraints to the traditional M̃ ∩ H̃-
reachability problem: a string constraint and a path constraint.



Definition 4.2 (String Constraint). Let t be a string over
the alphabet Σc = {)1, . . . , )i }, i.e., t contains only close
parentheses, representing a call stack going from the event-
containing method to main. Given t and an integer n, we
consider the following two string constraints defined on a
string s over the alphabet Σ = ΣM ∪ ΣH :
• Prefix constraint (πt ): s satisfies the constraint, denoted
as πt ⊢ s , iff s ∈ M̃ and the unmatched close parentheses
in its reduced string Rs is a prefix of t .
• Unbalanced constraint (ψn): s satisfies the constraint,
denoted asψn ⊢ s , iff s ∈ H̃ and the number of unbal-
anced open brackets in its reduced string Rs is ≤ n.

Definition 4.3 (Path Constraint). Given a digraph G and
a particular node u ∈ G, a path l ∈ G satisfies the path
constraint αu iff l passes u, denoted as αu ⊢ l .

Intuitively, string t represents the calling context c in a
collected CE pair. In a CR(n) translation, we employ the prefix
constraint πt to guarantee that the inferred reference context
is consistent with the collected calling context represented
by string t . The unbalanced constraintψn imposes a length
requirement on the inferred reference contexts. Finally, the
path constraint αu ensures that each inferred reference path
in the graph actually goes through the object nodeu accessed
in the collected event. We refer to u as the anchor node in
the path. Next, we discuss a concrete example.

Example 4.4 (String Constraint). Consider the path l from
node in13 to o9 in Figure 2. The path goes through node
u = o2. Therefore, we have αu ⊢ l . The corresponding path
string sl is “)4 (3 (10 [arr_elm [array )10” and its reduced string
Rsl is “)4 (3 [arr_elm [array”. Let t be the string “)4” (i.e., cap-
tured call stack) and n = 2 (i.e., length requirement). We can
see that the unmatched close parentheses in Rsl is “)4” which
is a prefix of the calling context t = “)4”. Moreover, Rsl con-
tains 2 unmatched open brackets, satisfying the unbalanced
constraint. As a result, we have πt ⊢ sl

∧
ψn ⊢ sl .

In general, constraint-guided CFL-reachability applies
string constraints to the path string sl of each M̃ ∩ H̃ path l ,
while the path constraint is applied to the path l itself. Next,
we formally define our formulation.

Definition 4.5 (Constraint-Guided CFL-Reachability).
Given an edge-labeled digraph G, a constraint-guided-CFL
(CG-CFL) reachability problem is denoted as Lϕα -reachability,
where L is a CFL, ϕ is a string constraint, and α is a path
constraint. Node v ∈ G is Lϕα -reachable from u iff there
exists a path l from u to v , such that l satisfies the path
constraint α (i.e., α ⊢ l) and its path string sl of l satisfies
the string constraint ϕ (i.e., ϕ ⊢ sl ).

Definition 4.6 (CG-CFL Formulation of CR(n)). Given
a digraph G, a dynamically captured CE pair (c , e =
⟨o,v, f , stmt, op⟩), as well as a user-defined length parame-
ter n, a CR(n) translation is formulated as a single-source

M̃π
α ∩ H̃

ψ
α -reachability problem in G, which aims to find all

object nodes o′ ∈ G such that node o′ is M̃π
α ∩ H̃

ψ
α -reachable

from the variable node v (contained in the event statement).
Specifically, each such path l from v to o′ satisfies the path
constraint αo ⊢ l . The path string sl satisfies the string con-
straint πc ⊢ sl

∧
ψn ⊢ sl .

Informally, a CR(n) translation uses the recorded event
object o as the anchor node and imposes a prefix constraint
πc w.r.t. the recorded context c in the exploration of the M̃-
paths while looking for a sequence of up to n unbalanced
open brackets (i.e., satisfying the unbalanced constraintψn )
in the exploration of H̃-paths. Using o as the anchor node, an
M̃π
α ∩ H̃

ψ
α -path l = v → . . . → o′ can be naturally divided

into two sub-paths w.r.t. the midpoint o. We denote them
as l1 = v → . . . → o and l2 = o → . . . → o′, respectively.
Consider their corresponding path strings sl1 and sl2 .

• String sl1 ∈ M̃ ∩ H models the inverse of the object
flow from o to v . Since o and v are both captured by
the dynamic analysis and v points to o, sl1 does not
contain any unbalanced heap accesses.
• String sl2 ∈ M̃ ∩ H̃ contains open brackets explaining
how o is referenced (directly or transitively) by o′.

Since object o can be referenced by many other objects,
only a few of which are relevant for the captured event, the
essence of this formulation is to use prefix constraints to filter
out irrelevant paths that are not consistent with the calling
context c captured. In addition, since the calling context is
w.r.t. the event statement (containing the variable v), we use
v as the starting point for the path search.

CR(n) decomposes l into l1 and l2 to compute the M̃π
α ∩H̃

ψ
α -

reachability. In particular, the first sub-path l1, without un-
balanced heap accesses, could be computed using a context-
sensitive alias analysis such as [46]. We can find l2 by modi-
fying the alias analysis to identify unbalanced open brackets
that are consistent with l1.

Example 4.7 (CR(n) Translation via CG-CFL-Reachability).
Figure 4a shows a slightly more complex example that we
use to illustrate our translation. This example has many inter-
esting properties of a typical object-oriented program, such
as use of collections and factory methods (e.g., createList())
that Figure 2a does not have. During its execution, an event
e occurs when a.value is read on line 21. Suppose a dynamic

analysis records a CE pair (c , e) where c = foo()
)6
−→main()

and e = ⟨o15,a, value, stmt21, r ⟩. Here call6 indicates the call
site at line 6 invoking foo(), stmt21 represents the read state-
ment that occurs at line 21, and o15 represents the allocation
site at line 15.

Figure 4a shows that variablem at line 2 holds a reference
to object o15 by calling method populateList(). Figure 4b
shows the corresponding graph representation. From the
graph, we can see that variablem2 is an alias of r10, which



1 void main(String[] args){

2 List m = createList();

3 populateList(m);

4 for(int i = 0; ...; i++){

5 A e = (A) m.get(i);

6 foo(e);

7 }

8 }

9 List createList(){

10 List r = new ArrayList();

11 return r;

12 }

13 void populateList(List m){

14 for(...){
15 A a = new A();

16 m.add(a);

17 }

18 }

19 void foo(A a){

20 //read event

21 println(a.value);

22 }

24 class ArrayList{

25 Object[] array;

26 ArrayList(){

27 tmp = new Object[...];

28 this.array = tmp;

29 }

30 void add(Object obj){

31 tmp = this.array;
32 tmp[...] = obj;

33 }

34 Object get(int i){

35 tmp = this.array;
36 Object r = tmp[i];

37 return r;

38 }

39 }

(a) Example code.
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(5(3

(16(16 (2
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(5 (6

array arr_elm

value
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arrayarr_elm

(b) ISPG for the example: nodes are named in the same
way as in Figure 2b; S8 is the symbolic node that is a
memory-alias of the event object o15.

Figure 4. A more complicated example and its ISPG.
points to object o10. There exists an M̃π

α ∩ H̃
ψ
α -path l from

variable a19 (where the read event occurs) through the event
object o15 to object o10 (the ArrayList object). In particular,
the first sub-path l1 from a19 to o15 (a19 → S8 → S10 → S7 →
S6 → S5 → S1 → S4 → S13 → S12 → S11 → o15) repre-
sents the inverse of the object flow from o15 to a19. The sec-
ond sub-path l2 (o15 → S11 → S12 → S13 → S4 → S1 → o10)
represents how o15 is transitively added into o10. The reduced
path string sl of the entire path l is “)6 [arr_elm [array (2”.
Suppose the user needs a CR(2) translation. It is easy to

see that theM-component of the reduced string sl is “)6 (2”,
which satisfies the prefix constraint πc , i.e., π“)6” ⊢ “)6 (2”.
The path string sl1 of the first sub-path l1 contains balanced
heap accesses since variable a19 points to object o15. The path
string sl2 of the second sub-path l2 actually reveals the heap

access path S13
array
−−−−→ S12

arr_elm
−−−−−→ S11. However, reporting

this path with symbolic nodes on it may not be useful since
these nodes are internal representations used by the static
analysis and they do not carry any meaning from the source
code. To overcome this challenge, our analysis finds the
actual objects these symbolic nodes represent, which are, in
this case, o10, o27, and o15, respectively. Finally, our analysis
reports o10

array
−−−−→ o27

arr_elm
−−−−−→ o15 as the result.

5 Translation Algorithm
This section discusses our CR(n) translation algorithm based
on the SPG representation [45] of the program.
5.1 Symbolic Points-to Graph and MemAlias

An SPG is a locally-resolved points-to graph: it contains real
points-to relationships that can be resolved within a method
while using placeholder symbolic nodes to represent ob-
jects that are created outside of the method. SPG simplifies
the complex object flow between an object and a variable
(through copy assignments, parameter passing, etc.) into

simple MemAlias relationships between the object and a sym-
bolic node, a feature that simplifies our analysis. An SPG is
constructed entirely by an Andersen-style analysis for each
method. Different SPGs are connected (trivially) at call sites
to form an ISPG for the program. We refer the reader to [45]
for the details of its construction.
As briefly discussed in Section 4, MemAlias ⊆ (O ∪ S) ×
(O ∪ S) [45] is defined in the same way as language H (cf.
Figure 3b) with the close and open brackets representing a
field points-to edge f and its inverse edge f . The context-
sensitive MemAlias relation used in our CR(n) translation is ex-
pressed using M̃∩H-reachability over an ISPG. As with other
context-sensitive analyses, it allows unbalanced method calls
for context-sensitivity but does not need unbalanced heap
accesses due to its modeling of aliases.

SPG allows for the answering of alias queries without first
performing a points-to analysis. For example, if we have two
statements a = b . f and d = b . f , there will be two points-to

edges Sb
f
−→ Sa , and Sb

f
−→ Sd . The MemAlias grammar can

quickly find that the symbolic nodes Sa and Sd are memory
aliases without knowing which objects b may point to. This
formulation is particularly suitable for us for two reasons:
(1) the value flows via local copy assignments and parameter
passing have been eliminated; fields accesses are modeled
explicitly using f and f edges, making it easier for us to
match references and (2) since stores and loads are unified
by field edges f , strings in MemAlias become palindromes
(e.g., abccba), leading to improved efficiency.

Example 5.1 (The M̃∩H-Path). In Figure 4b, there exists an
M̃∩H-path from S8 (i.e., the placeholder of the event object)
to o15 (i.e., the actual event object created in populateList):

S8
)6
−→ S10

(5
−→ S7

[arr_elm
−−−−−→ S6

[array
−−−→ S5

)5
−→ S1

(3
−→ S4

(16
−−→

S13
]array
−−−→ S12

]arr_elm
−−−−−→ S11

)16
−−→ o15.



Algorithm 1: Algorithm for CR(n) translation.
Input: An ISPG G , a user parameter n, a CE pair (c , e = ⟨o, v, . . .⟩)

Output: A set R of reference contexts {on
fn
−−→ on−1

fn−1
−−−−→ . . .

f1
−−→ o}

1 initialize set R to ∅
2 initialize worklistW to ∅
3 let set SN be the set of symbolic nodes pointed to by v in G
4 foreach Sv ∈ SN do
5 construct a string str from the calling context c
6 TM ←MemAlias(Sv , o, str)
7 foreach tM ∈ TM do
8 initialize an empty stack tH
9 insert toW the tuple {(o, tM , tH , false)}

10 whileW , ∅ do
11 remove a tuple (x , tM , tH , b) fromW
12 if x ∈ S ∧ b then
13 construct a string str from the stack tM
14 pairs← MemAliasAll(x, str)
15 foreach (o′, T ′M ) ∈ pairs do
16 foreach t ′M ∈ T

′
M do

17 t ′H ← tH
18 let (o′′, f ) be the top of stack t ′H
19 pop t ′H and push (o′, f ) onto t ′H
20 if o′ is unvisited under the context t ′M then

W ←W ∪ {(o′, t ′M , t ′H , false)}

21 else
22 /*Inspect x ’s edges*/
23 if |tH | > 0 then // A solution is found
24 R ← R ∪ tH
25 if |tH | = n then // don’t search any more
26 continue

27 foreach edge u
label
−−−→ x ∈ G do

28 t ′M ← tM , t ′H ← tH and b′ ← b
29 if label = f then
30 push (u, f ) onto t ′H
31 b′ ← true

32 else if label = (i then
33 if top of t ′M is “(i ” then
34 pop t ′M
35 else // unrealizable call chain
36 continue

37 else if label = )i then
38 push “(i ” onto t ′M
39 if u is unvisited under the context t ′M thenW ←W ∪

{(u , t ′M , t ′H , b′)}

40 return R

The H -component of the path string
“[arr_elm [array ]array ]arr_elm” belongs to language H, in-
dicating that the variables a15 and a19 pointing to these two
nodes respectively are pointer aliases.

5.2 CR(n) Translation

This subsection describes the CR(n) translation algorithm
that computes the single-source-multiple-sink M̃ ∩ H̃-
reachability based on MemAlias.
Basic Idea. Algorithm 1 shows the CR(n) translation algo-
rithm that solves single-source M̃π

α ∩ H̃
ψ
α -reachability. As de-

scribed in Section 4.3, in a CR(n) translation, each M̃∩H̃-path
from the variable node v to an object node o′ is composed
of two parts, i.e., the first part l1 from v to the event object
o and the second part l2 from o to o′. The basic idea of the
algorithm is to handle these two sub-paths in two phases. In

the first phase (lines 5 – 6), we compute l1 from v to o. Since
v points to o, the symbolic node Sv (thatv points to) must be
a memory alias of o. Hence, l1 has essentially been captured
by the MemAlias formulation (between Sv and o).

In the second phase (lines 10 – 39), we explore the graph
starting from node o. Due to the bidirectedness of the ISPG,
we only need to traverse the incoming edges of each node to
identify path l2. During the graph traversal, for each incom-
ing edge u → x of node x , we employ two stacks tM and tH
to handle method-call and field-access edges, respectively.

• Handling of call/return edges: for each return edgeu
)i
−→

x , we push a symbol “(i ” onto stack tM . We pop symbol

“(i ” when encountering a matched call edge u
(i
−→ x .

• Handling of field points-to edges: for each edge u
f
−→ x ,

we push the node-field pair (u, f ) onto stack tH .
The stack operations for handling call/return edges are

defined in expected ways.We use the alias analysis algorithm
MemAlias, proposed in [45], to test whether two (object and
symbolic) nodes are memory aliases. The original MemAlias
algorithm works as follows: it takes as input two symbolic
or object nodes Sa and Sb , and returns all M̃ ∩ H paths from
Sa to Sb . If Sa and Sb are not aliases, it returns an empty set.

In this work, we extend the MemAlias algorithm in a way so
that it takes an additional input string str , which corresponds
to theM-component of the reduced form of a string in lan-
guage M̃∩H̃. Initially, str represents the calling context c col-
lected in a CE pair (line 6). The extended MemAlias algorithm
achieves two goals. First, it ensures that any MemAlias-path l
it finds from Sv to o has to be consistent with str . Second, it
returns a set of stacksTM , each stack tm of which represents
theM-component of the reduced form of l ’s path string.
Based on MemAlias, we derive a new algorithm called

MemAliasAll (line 14), which solves single-source M̃ ∩ H-
reachability without needing the target node. Given a source
symbolic node Sv and a string str representing the M-
component of the reduced form of a string in language M̃∩H̃,
MemAliasAll(Sv , str) finds all such (symbolic or object node)
o that there exists an M̃ ∩ H-path from Sv to o and the path
string is consistent with str . MemAliasAll returns a set of
node-stack pairs in the form of (o, tM ), each of which con-
tains an object o that is a memory alias of Sv and a stack tM ,
representing the M-component of the reduced string of a
path from Sv to o.
The basic structure of the algorithm is as follows: (1) we

query MemAlias (line 6) for the set of M̃ ∩ H-paths from Sv
(the symbolic node variable v points to) to the event object
o, using the collected calling context c as a string constraint.
Each path found by MemAlias thus represents the first sub-
path l1, which is consistent with c . Each stack tM returned by
MemAlias represents theM-component of the reduced form
of l1, which will be used subsequently to find the second sub-
path; (2) we search the graph starting from o for the second



sub-path l2, using tM as a starting context; hence, each l2
found needs to be consistent with tM . In this process, we

keep searching for field points-to edges of the form a
f
−→ b

that are building blocks of a reference path. One tricky case
here is that since ISPG is a partially resolved points-to graph,
many symbolic nodes may represent the same object. Hence,
when we reach a symbolic node S1 (backward) from an edge

S1
f
−→ S2, it is not enough to only follow the incoming edges

of S1 itself in the next step. Since S1 may be memory aliases
of other nodes such as S3 and o4, it is important to find these
nodes and follow their incoming edges as well. To this aim,
we use algorithm MemAliasAll (line 14).
Main Algorithm. This algorithm takes as input a CE pair
and a user parametern and returns a set of reference contexts
R. For each symbolic node Sv that variable v points to, we
first query algorithm MemAlias for finding all M̃π

α ∩ H paths
from Sv to the event object o (line 6). MemAlias returns a set
of stacks TM for the paths found. These paths are essentially
the l1 sub-paths as discussed above. The goal of the rest
of the algorithm is to find all sub-paths l2 such that the
concatenated path string “sl1 ⊕ sl2” satisfies the constraints
πc andψn .

The algorithmmaintains a worklistW and iteratively adds
tuples intoW . Each iteration of the loop on line 11 retrieves
a tuple in the form of (x , tM , tH ,b), where x is the node being
processed, tM and tH are the two stacks for graph traver-
sal, and b is a boolean flag indicating whether node x is
reached by following a field edge. If flag b is set, we query
the MemAliasAll algorithm to find the alias set of the current
node. Each pair (oi , fi ) in tH indicates that object x being
processing is reachable from field fi of the object oi . Our
algorithm explores the ISPG to gradually find each (oi , fi )
leading to the event object o.

Initially, the event object o is added to the worklistW with
the stack tM , which is obtained from MemAlias at line 6. tM is
used as the initial constraint to guide the graph traversal (line
7–9). Each iteration removes a tuple (x , tM , tH , b) fromW
(line 11). Suppose the top of stack tH is (oi , fi ), the goal of the
iteration is to find another object oi+1 such that the reference

relationship oi+1
f
−→ oi holds. Node x being processed may

be either a symbolic node or an object node.
Lines 12–20: If x is a symbolic node and b is true indi-
cating a new field edge has been recently added to tH , we
query MemAliasAll to find all such objects o′ that are mem-
ory aliases of x . MemAliasAll also returns, for each o′, a set
T ′M of stacks under which the aliasing occurs. For each stack
t ′M ∈ T

′
M , we add a tuple (o′, t ′M , tH , false) to the worklist for

further processing.
Lines 21–39: If x is an object node, we need to explore the
field edges to find objects that can reference x . The first step
is to check whether the size of the stack tH already reaches
the user-defined length parameter n (line 25). If it does, there

is no need to search any more and we add the stack tH to the
solution set R. Otherwise, we traverse x ’s incoming edges
(lines 27–39). We are particularly interested in incoming

edges of the form u
f
−→ x : if such an edge is encountered,

we push a new pair (u, f ) onto t ′H . We then set b ′ to true,
indicating that a new field edge has been found. This flag
triggers the invocation of MemAliasAll (lines 12–20) in future
iterations. All the other branches deal withmethod entry/exit
edges to guarantee calling context sensitivity. Finally, a new
tuple is added to the worklist (line 39).
Next, we give an example to illustrate the major steps

involved in our CR(n) translation algorithm.

Example 5.2 (CR(n) Translation on the ISPG). Given the

CE pair (c = foo
)6
−→main, e = ⟨o15,a19, . . .⟩) for the running

example in Figure 4a, we show how Algorithm 1 translates
reference contexts using the corresponding ISPG in Figure 4b.
First, since variable a19 points to S8 on the graph and o15 is
the object captured by the dynamic analysis, we know that
there must exist a MemAlias-path from S8 to o15. So we query
MemAlias (line 6) to find the first sub-path l1 from S8 to o15
using c as the constraint. Example 5.1 has already given such
a path. Its path string sls clearly satisfies the constraint πc ,
i.e., π“)6” ⊢ sl1 . Because there is only one such path, the stack
set TM returned by MemAlias contains only one stack tM =
{“)3”, “(6”}, which corresponds to the reduced M-component
“)6 (3” of the path string sl1 . A tuple (o15, tM , ∅, false) is thus
added to worklistW (line 9) and is processed by the first
iteration of the loop on line 10.

Since o15 is an object node, we traverse its incoming edges
to find the second subpath l2. Node o15 has one incoming

edge S11
)16
−−→ o15. Hence, we add a new tuple (S11, t ′M , ∅, false)

to the worklist, where t ′M = {“)16, “)3”, “(6”}. When this tuple
is processed in the next iteration, we skip the MemAliasAll

query on lines 12–20 since b is false and proceed to in-
specting S11’s incoming edges. Node S11 has one incoming

field points-to edge S12
]arr_elm
−−−−−→ S11 and S12 has not been

visited yet. We process this edge (lines 29–31) and add
the tuple (S12, t ′M , t

′
H , true) to the worklist (line 39) where

t ′M = {“)16, “)3”, “(6”} and t
′
H contains only (S12, arr_elm).

The next iteration of the loop retrieves this tuple and
queries MemAliasAll on S12 using t ′M as the string con-
straint str at line 14. MemAliasAll returns two node-stack
pairs w.r.t. S6 and o27. Consider the returned pair (o27,T ′′M ),
where T ′′M contains only one stack t ′′M = {“)10”, “)2”, “(6”}.
Lines 17–20 replace the top of stack t ′H with (o27, arr_elm),
which generates a new stack t ′′H , and then add the tuple
(o27, t

′′
M , t

′′
H , false) into worklistW . Finally, the check on line

23 returns true and reports a reference contexto27
arr_elm
−−−−−→ o15

of length 1. Similarly, further processing of the worklist
tuple (o27, t ′′M , t

′′
H , false) obtains another reference context

o10
array
−−−−→ o27. As a result, the CR(2) translation has found



Bench M(K) T(s) CL TM NR LR
antlr 12.9 11.6 19 438 1.0 1.0
bloat 10.8 16.4 16 188 1.0 2.0
chart 17.4 27.6 16 80 1.0 2.8
hsqldb 12.5 13.9 23 1628 1.3 1.7
luindex 10.7 5.2 8 16 1.0 1.0
lusearch 10.2 8.9 15 1413 1.0 1.0
fop 23.5 16.7 8 23 1.0 1.0
pmd 15.3 29.1 50 796 1.0 1.0
jython 27.5 12.4 2 14 1.0 1.0
xalan 12.8 14.8 5 14 1.0 4.5
eclipse 41.0 10.4 10 187 1.0 2.7
geomean 13.7 1.02 1.56

Table 2. Analysis performance and precision on DaCapo-
2006: we report, for each program, the total number M of
statically reachable methods, the analysis time T averaged
across the translation queries (in seconds), the length of
dynamic calling contexts CL averaged across the queries,
the average number of methods TM traversed to answer
each query, the ratio NR between the numbers of the static
and dynamic reference paths, and the ratio LR between the
maximum lengths of the dynamic and static reference paths.

one new reference context o10
arr_elm
−−−−−→ o27

arr_elm
−−−−−→ o15, which

reveals the logical ArrayList object (defined at line 10 in
Figure 4a) that “contains” the event object in the CE pair.

6 Evaluation
Our implementation includes a Soot-based analysis imple-
mentation and the modification of CCU [14] on JikesRVM
that enables heap dumping for two real dynamic analyses
implemented in CCU — a leak detector Sleigh [8] and a race
detector Pacer [7]. To demonstrate the effectiveness of our
translation, we conducted two sets of experiments. The first
experiment focused on understanding how our analysis per-
forms under different parameters n based on the DaCapo
benchmark set [6].

The second experiment, which contained studies focused
on Sleigh and Pacer, was designed to assess whether the
translated contexts could help developers better understand
the reported problems. All experiments were executed on a
machine with an Intel Xeon E5620 2.40GHz processor, run-
ning Linux 2.6.18. The maximal heap size specified for each
program run was 2GB. We used the 2006 version of DaCapo
because CCU was built on an old version of JikesRVM (3.1.1),
which could not execute a few programs in the most recent
version of DaCapo (9.12).
6.1 Static Analysis

To assess the cost and precision of our analysis, we took
the 20 most stale objects for each program reported by the
Sleigh leak detector in CCU. These 20 objects, their allocation
sites, and the calling contexts of their last use sites were
reported together. Since we modified CCU to dump the heap

(discussed in Section 1), we were able to find the complete
set of reference paths leading to any leaking object offline
in the heap dump. These 20 objects were fed to our static
analysis for context translation. The call chain in each sample
was used as analysis input and the dynamic reference paths
(which are complete) in the heap dumps were used as an
oracle, against which the results of our analysis are compared
to understand the analysis precision. We set n to a very large
number (i.e., 10) to let our analysis find the longest possible
paths under a budget (i.e., the maximum number of edges
traversed). We used 20K in our experiments — when the
budget is encountered, our analysis stops the attempt to
“grow” any paths and reports the set of paths found.

Note that we have also run our static analysis on the Pacer
reports. These results are not shown due to space limitations.
In addition, while Pacer and Sleigh are two different dynamic
analyses, from the perspective of static analysis, there is no
difference between them — our static analysis analyzes the
same (DaCapo) programs; the heaps for each program execu-
tion from Sleigh and Pacer are also the same. The numbers
for Pacer are very similar.

Table 2 reports two major measurements: (1) analysis per-
formance — the average time T taken to answer each query
and (2) analysis precision measured in two aspects NR and
LR. NR is calculated as SN

DN averaged across the 20 objects,
where SN is the number of non-overlapping reference paths
reported by the static analysis and DN is its dynamic coun-
terpart extracted from the heap dumps. Two reference paths
are non-overlapping if one is not the suffix of another. The
higherNR, the less precise the static analysis. LR is calculated
as DL

SL , where SL and DL are the maximum lengths of the
static and dynamic reference paths, respectively. The higher
LR, the less precise the analysis.

We make several observations on these numbers. First, the
translation time is reasonably small — due to the demand-
driven nature of the analysis, the amounts of time needed
to answer queries are all within 30 seconds. Clearly, our
technique significantly reduces the runtime overhead of a
dynamic analysis since a heap dump typically takes dozens
of minutes to several hours.

Second, the quality of the statically reported paths is high
— this is reflected by the closeness (1) between the numbers
of static and dynamic reference paths (i.e., NR) and (2) be-
tween the maximum lengths of the static and dynamic paths
(i.e., LR). Specifically, the geomeans of NR and LR are 1.02
and 1.56, respectively, indicating that the statically inferred
reference paths are close to their dynamic counterparts.
The LR of xalan is an outlier. The reason why our static

analysis could not find longer reference paths was due to the
massive use of recursive data structures to represent XML
attributes. The heap writes that initialize these attributes are
all in loops. Similarly to [45], we soundly model recursive
data structures with artificially created wildcard (*) fields,



Allocation site:

  JavaCharStream.GetImage()

                     String:415

Last use site:

  JavaParser.LabeledStatement()

                      void:4023

  JavaParser.Statement()

                      void:3921

  JavaParser.BlockStatement()

                      void:4100

  JavaParser.Block() void:4061

void LabeledStatement() {

    ASTLabeledStatement

                  jjtn000 = new ...;

    Token t =

          jj_consume_token(id);

    /* Line 4023: last use */

    jjtn000.setImage(t.image);

    ...

}

Reference path:
    Token.newToken() Token:87

        (Object type: GTToken)

=> (field: image)

    JavaCharStream.GetImage()

                                  String:415

       (Object type: String)

(a) A stale object with calling context (b) PMD source code (c) Important reference paths

Figure 5. Memory leak example in PMD; each site is pre-
sented as “Class.function(args) returnType:lineNum”.

Allocation site:
  GraphNode.<init>()

                     void:49

Last use site:

  Graph$EdgeSet

                  .iterator()

              Iterator:950

  DominanceFrontier

       .calcFrontier(...)

         LinkedList:128

  DominanceFrontier

       .calcFrontier(...)

         LinkedList:110

Iterator iterator() {

   ...

   return new Iterator() {

      public void remove() {

        //Line 950

        Set s = last.preds;

        s.remove(node);

      }

   }

}

Reference path #1:
    Graph.preds(...) Collection:164

    (Object type: Graph$EdgeSet)

=> (field: set)

     FlowGraph.newBlock(...)

                                   Block:1171

                     (Object type: Block)

=> (field: preds)

     GraphNode.<init>(...) void:49

                (Object type: HashSet)

Reference path #2
    Graph.preds(...)    Collection:164

    (Object type: Graph$EdgeSet)

=> (field: set)

    GraphNode.<init>(...)  void:49

                (Object type: HashSet)

(a) A stale object (b) Bloat source code (c) Important reference paths

Figure 6.Memory leak example in Bloat.

Allocation site:

    SegmentTermEnum.<init>

    (IndexInput, FieldInfos) void:32

Last use site:

    SegmentTermEnum.clone()

                                      Object:91

    TermInfosReader.terms()

              SegmentTermEnum:206

    TermInfosReader.enum()

                SegmentTermEnum:81

    SegmentReader.docFreq()

                                          int:300

 Object clone() {

   ...

   TermInfo clone =

    new TermInfo(termInfo);

   /*Line 91: last use*/

   termInfo.termInfo = clone;

   ...

   return clone;

 }

Reference path:

   TermInfosReader.<init>()

                                  void:33

   (Object type: ThreadLocal)

=> (field: enumerators)

   SegmentTermEnum.<init>

         (IndexInput,FieldInfos)

                                 void:32

    (Object type:

           SegmentTermEnum)

=> (field: termInfo)

   SegmentTermEnum.<init>

         (IndexInput,FieldInfos)

                                 void:32

    (Object type: TermInfo)

(a) A stale object (b) Lucene source code (c) Important reference paths

Figure 7. Memory leak example in Lucene search.

Conflicting stmts and stack:

 Read: OutputProperties.

  getDefaultMethodProperties()

                          Properties:361

          OutputProperties.<init>()

                                    void:130

          TransformerImpl.<init>()

                                   void:221

 Write: OutputProperties.

 getDefaultMethodProperties()

                         Properties:352

         OutputProperties.<init>()

                                   void:130

         TransformerImpl.<init>()

                                   void:221

static Properties

getDefaultMethodProperties(){

  ...

  /*Line 352: write to

        field m_text_properties*/

  m_text_properties = ... ;

  ...

  /*Line 361: read from the field*/

  ... = m_text_properties;

  ...

 }

Reference path:
   TransformerImpl.<init>()  void:402

            (Object type: XPathContext)

=> (field: m_owner)

   StylesheetRoot.newTransformer()

                              Transformer:212

        (Object type: TransformerImpl)

=> (field: m_textformat)

    TransformerImpl.<init>() void:221

       (Object type: OutputProperties)

(a)  Conflicting statements (b) Xalan source code (c) Important reference paths

Figure 8. Data race example in Xalan.

which causes precision loss. Without precise reasoning of
loop iterations (as done in an expensive shape analysis [33]),
it is difficult to understand how many times a particular field
reference appears in a recursive data structure.
In summary, our analysis makes it possible for the devel-

oper to spend an average of 13.7 seconds obtaining precise
reference path information that would have otherwise taken
several hours to profile (cf. Figure 1).

6.2 Usefulness Studies

To understand whether the reference paths are indeed use-
ful to explain problems, we have manually checked all the
reference paths produced by our analysis for 20 stale objects
reported by the Sleigh memory leak detector and 20 racy
objects reported by the Pacer race detector in each program.
Our experience shows that the reported reference paths are
useful to pinpoint root causes for all but a few trivial cases
that can be easily understood without any context infor-
mation. Figure 5 – 8 show an array of representative cases
in which reference contexts provide significant benefit for
problem diagnosis.
Memory Leak Diagnosis. Figure 5 shows an example in
PMD — a static analysis based bug detector for Java. CCU
reports that a stale object, which is created in method
GetImage() on line 415 of class JavaCharStream shown in
Figure 5(a). The calling context reveals that the last use site
of this object is on line 4023 of method LabeledStatement(),
whose source code is shown in Figure 5(b). An inspection of
the source code leads us to suspect that the stale object is
cached in the image field of a Token object. However, there
are many different kinds (subclasses) of Token. Developing a
fix is impossible without knowing the particular Token type
that unnecessarily references the stale object. This informa-
tion is revealed explicitly by our reference path shown in
Figure 5(c), which shows that only the image field of GTToken
objects contains unnecessary references. They should be
removed after the referenced strings are used.

Figure 6 shows an example in Bloat. The leaking object re-
ported is a HashSet object created in the constructor of class
GraphNode and referenced by its field preds. As shown in Fig-
ure 6(a) and (b), the last use site of the object is in the iterator
code where the set is retrieved from field preds in order to
remove an object from it. The calling context shows that
method iterator is invoked when the dominance frontier is
computed, which does not give us any useful information of
why it is not used again after a node is removed. Our static
analysis reports two important reference paths (Figure 6(c)).
The first one shows that the leaking object, although created
in GraphNode, is actually referenced by an object of Block,
which is a subtype of GraphNode. This information is very
valuable because GraphNode has more than 20 subclasses,
each of which has a specific structure (e.g., with different
numbers and types of predecessors and successors). Know-
ing the subtype Block immediately directs us to check its
logic of adding/removing predecessors.
The second reference path shows us a more surprising

piece of information — the leaking object is also referenced
by an inner class Graph$EdgeSet. This class is created inside
Graph to facilitate edge traversal. When an edge iterator is
created for a node, the node’s predecessor set (i.e., the leaking
object) is cached in its Graph$EdgeSet. Hence, just releasing



the leaking object from Block is not enough; we need to
additionally clear the cache from Graph$EdgeSet.

Figure 7 shows another leak extracted from Lucene search.
With the calling context information and the stale object’s
allocation site in Figure 7(a), we can see that an object
of type SegmentTermEnum is cloned and then caches the
cloned object in a field of itself (termInfo is a field of ob-
ject SegementTermEnum) (in Figure 7(b)). By investigating the
reference path in Figure 7(c), we understand that it is the
ThreadLocal object that caches the original SegmentTermEnum
object, which, in turn, caches its clone. The leak can be fixed
by letting ThreadLocal object cache the clone instead of the
original object. Finding where the original SegmentTermEnum
object is referenced is nearly impossible by inspecting
only the calling context — the store that writes it into the
ThreadLocal object is executed during thread creation, which
is in the DaCapo harness code that is not even part of Lucene.
Data Race Diagnosis. Figure 8 shows a data race example
reported by Pacer [7]. The race occurs when the read state-
ment at line 352 and the write statement at line 361 (shown
in Figure 8(b)) are executed concurrently without any protec-
tion. Many other races reported by Racer are also w.r.t. the
same field m_text_properties. It is easy to see that we need to
protect this field, but knowing where this protection should
be added is challenging. After seeing the reference path re-
ported by our analysis (Figure 8(c)), it is immediately clear
to us that m_text_properties is a field of a TransformerImpl

object, which is referenced by an XPathContext object.
To safely process different XML files in different

threads, we should let XPathContext reference a distinct
TransformerImpl object for each thread, instead of sharing
one single TransformerImpl object among threads. To fix
the race, we can change the field m_owner in XPathContext

to a hash map or array, each element of which stores a
TransformerImpl object for a thread. Note that without this
reference context, we would have focused only on the field
m_text_properties and developed a naïve fix by synchro-
nizing all accesses of this field. This has two problems: (1)
it is clearly not as efficient as the synchronization-free ap-
proach mentioned above; and (2) TransformerImpl has many
other fields that are not protected as well; only synchronizing
m_text_properties is not sufficient.
We have also found many cases in Eclipse that are simi-

lar to this one — one single data processor (such as parser,
tokenizer, etc.) object is used by multiple threads to process
different data items. These cases are omitted due to space
limitations. Pacer reports races w.r.t. multiple fields of the
processor object. Without the reference information, one
would have to develop many synchronizations to ensure
that the one processor can be used safely by multiple threads.
Inspecting the reference paths would quickly direct the de-
veloper’s attention to the classes higher than the processor
class on the reference hierarchy (e.g., its direct and transitive
owning classes), helping her understand how the processor

is retrieved in different threads and determine in what class
fixes can be added to achieve both safety and efficiency.
7 Related Work
Many dynamic analyses [7, 9, 19, 32, 34, 39, 42, 43, 54] need
to profile either calling contexts or reference contexts.

The CFL-reachability formulation [47] is first introduced
for database query evaluation. Later work of Reps et al. [13,
26, 28, 30, 31] proposes to model realizable paths using a
context-free language that treats method calls and returns
as pairs of balanced parentheses.
CFL-reachability can be used to formulate many static

analyses, such as polymorphic flow analysis [24], shape
analysis [27], context-insensitive [38, 52] and context-
sensitive [38, 46] points-to analysis, and information flow
analysis [20]. The work in [16, 22] studies the connection
between CFL-reachability and set-constraints, shows the
connection between the two problems. Kodumal et al. [17]
extend the set constraints to express analyses involving one
context-free and any regular reachability properties.
CFL-reachability is also investigated in the context of

recursive state machines [3], streaming XML [2], and
pushdown languages [4]. Sridharan et al. define a CFL-
reachability formulation to precisely model heap accesses,
which results in demand-driven points-to analyses for
Java [37, 38, 41]. Combining the CFL-reachability formu-
lations of both heap accesses and interprocedural realiz-
able paths, [37] proposes a context-sensitive analysis that
achieves high precision by refining points-to relationships.
Zheng and Rugina [53] propose a CFL-reachability-based
formulation of demand-driven alias analysis for C. Xu et al.
[45] propose the symbolic points-to graph (SPG) represen-
tation of the program. Recent work used CFL-reachability
for library summarization [40] or specification inference [5].
Much work [10, 12, 49–51] has also been done to improve
the efficiency of solving CFL-reachability.
8 Conclusion
The generality of CG-CFL is much beyond this particular
application. It defines a general and sound framework for a
class of interleaved language (A ∩ B) reachability problems.
In particular, the framework can be used to answer queries
of the form: if there are constraints over the strings of one
language (A) and/or over the CFL paths, what should the strings
of the other language (B) look like? Future work will further
explore this formulation and develop new applications.
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