
0
1
2
3
4
5
6
7
8

3G 5G 10G 14G 19G

M
em

or
y

U
sa

ge
 (G

B
)

Memory Usage of Facade-generated
Word Count and the original

Original Facade

 Optimizations of Big Data applications:
− Data pipeline: [Agrawal VLDB’08], Flume-Java [Chambers

PLDI’10], DryadLINQ [Yu OSDI’08]
− MapReduce-related: Hive [Thusoo ICDE’10], Panacea [Liu

CGO’10]
 Techniques for reducing runtime management costs

– [Aiken PLDI’95], [Hallenberg PLDI’02], [Hick ISMM’04]
– Immix [Blackburn PLDI’08]
– Prolific types [Shuf POPL’02]

 Techniques for reducing numbers of objects
– Object pooling and certain design patterns
– Object inlining: [Dolby PLDI’00]
– Pool-based allocation: [Lattner PLDI’05, PLDI’07]

Design a scalable and efficient system is a key challenge
to both researchers and practitioners

Facade: A Compiler and Runtime for (Almost) Object-Bounded Big Data Applications
Khanh Nguyen, Kai Wang, Yingyi Bu, Lu Fang, Jianfei Hu, Harry Xu

University of California, Irvine

Motivation

Hyracks [Borkar ICDE’11]

GPS [Salihoglu SSDBM’13]

Data Representation

Implementation and Evaluation

Conclusions
 A complete, non-intrusive package with a compiler that can

automatically transform existing programs and a runtime system that
runs on top of a JVM

 Experimental results show significant improvement in execution
time, memory consumption, and scalability

 Implemented using the Soot framework [Vallée-Rai CC’00]
 Most of the Java 7 features are supported
 40+ KLOC; 1.5 years of development
 Fast translation speed: 950 instructions per second on average Mainstream approach is to enable parallelism by using a large

number of machines
 Typical parallel frameworks such as MapReduce, Giraph, Hive, or

Pig use Java, a managed language which comes with a managed
runtime system

Related Work

Golden Rule for Scalability

Data Manipulation

GraphChi [Kyrola OSDI’12]

Native memory

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Total time Update
time

Load time GC time Memory

Page Rank

4G
6G
8G

 Data objects are stored in native memory. A memory page is a
fixed-length contiguous block of memory, obtained through the
Unsafe interface

 The layout of an object in a memory page is exactly the same as
the way the object was stored in the heap

 Each data object becomes a data record and uses absolute
memory address as its reference (pointer)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Total time Update
time

Load time GC time Memory

Connected Components

 The number of heap objects and references must not grow
proportionally with the cardinality of the dataset

 Formally, Facade guarantees a static bound:

 Heap objects are created as facades and used only for control
purposes: resolve method calls, perform dynamic type check, pass
parameters, return values,…

 A data parallel platform to run data-intensive jobs on a cluster of
shared-nothing machines

The original program
crashed in all of these

sets thus no figure

 A distributed graph processing system developed for scalable
processing of large graphs

 Improvements on Page Rank, KMeans and Random Walk:
 3-15% running time reduction  10-40% reduction in GC time
 14% space reduction

 A high-performance graph analytical framework that enables
efficient processing of large graphs on a single machine

 Normalized performance of the Facade-generated programs:
When object-orientation meets Big Data, the cost of
managed runtime system becomes the bottleneck
 Significantly reduced scalability: JVM crashes even if the size of

the processing dataset is much smaller than the heap size
 Prohibitively high memory management cost: GC time accounts for

up to 50% of the overall execution time [Bu ISMM’13]

Poor performance is inherent with the managed runtime
system and remains a serious problem despite many
optimizations from various research communities

• s : cardinality of the dataset

O(s)

• t : number of threads
• n : number of data types
• p : number of pages

O(t*n+p)

Benefits from Facade
 Smaller memory consumption
 Significantly reduced GC time

Facade Programming Model
 Breaking the long-held object-oriented programming principle:

“Objects are used both to store data and to
provide data manipulation interfaces”

 Facade makes a clear separation between data representation
and data manipulation

 Although t and p cannot be bounded statically, they are usually very
small, hence the total number of objects is “almost” statically
bounded

 The reduction is in many orders of magnitudes: in PageRank
(GraphChi) 14 billions data objects are reduced to 1363 objects

 Facade class DF
− Has only one instance field pageRef
− Does NOT contain actual data
− Contains all methods in data class D
− Its instances are controlled by bounded object pooling

x 105

 Bounded facade pooling
− A new approach to statically bound the number of DF’s instances
− Generate, for each data type, a pool whose size is the maximum

number of operands of that type required by an instruction
− At any program point, every element of a pool is available for use

 Improvement summary:
 5x reduction in GC time
 7%-28% reduction in memory

consumption (6+GB datasets)
 17% reduction in running time

(avg.) max 48%
 1.4x improvement in throughput

 Improvement summary:
 25x reduction in GC time, max 88x
 7% reduction in memory usage (avg.), max 32%
 10% reduction in running time (avg.), max 25% (External Sort)
 Scalability is significantly increased (3.8x Word Count)

Iteration-based Memory Management

 Allocation: customized, high-performance allocator
− Create a page manager per thread and per iteration to control

memory; page managers form a hierarchy
− Each page manager is associated with a pair

<iterationID, thread>
− Contiguous allocations get contiguous space to maximize data

locality
− Support mostly thread-local data allocation

 Deallocation:
− Once an iteration ends, reclamation can be safely done

concurrently on the sub-tree rooted at the current page manager

iteration_start()
…

thread[i].run() {
iteration_start()

}
…

iteration_end()

Iteration starts: create and
register a manager m which

is in main thread

Sub-iteration starts: create
and register manager ti as

child of manager m
Note that it is not required to

signal the end of the sub-
iteration

Iteration ends: memory
reclamation is started on the

sub-tree rooted at m

m

t1

t2

…

tn

<0, main>

<1, thread_1>

<2, thread_2>

<n, thread_n>

<…, thread_...>

class Professor {
int id;
Student[] students;
String name;

}

class Student {
int id;
String name;

}

Record
type Address Type Lock Fields

Professor 0x04e0 12 0 1254 0x0504 0x070a
Student[] 0x0504 25 253 9 0x0800 …
String 0x070a 4 … …

…
Student 0x0800 13 0 2541 0x0868

id

students

name

Transformation Example

class Professor {
int id;
Student[] students;
String name;

void addStudent(Student s,
int i) {

students[i] = s;

}
}

static void client
(Professor f) {

Student s = new Student();

Professor p = f;
Student t = s;

p.addStudent(t,0);

}

class Facade { long pageRef; …}

class ProfessorFacade extends Facade {
static int id_OFFSET = 0;
static int students_OFFSET = 4;
static int name_OFFSET = 8;

/* modified method’s signature */
void addStudent(StudentFacade sf, int i) {
/* release facades’ binding */
long thisRef = this.pageRef;
long sRef = sf.pageRef;

FacadeRuntime.writeArray(
thisRef, students_OFFSET, i, sRef);

}
}

static void client(ProfessorFacade pf) {
long fRef = pf.pageRef;

long sRef = FacadeRuntime.allocate
(Student_TypeID, Student_RecordSize);

StudentFacade sf = studentPool[0];
sf.pageRef = sRef;
sf.facade$init();

long pRef = fRef;
long tRef = sRef;

/* retrieve facades from pool */
ProfessorFacade pf2 = professorPool[0];
StudentFacade sf2 = studentPool[0];
/* bind facades with references */
pf2.pageRef = pRef;
sf2.pageRef = tRef;
pf2.addStudent(sf2,0);

}

 Original code  Facade-generated code

Concurrency Support
 Thread-local pooling for

facade objects
 One shared lock pool

• Each object is an instance
of a special lock class

• The number of locks
simultaneously needed is
bounded by the number of
threads

Shared Lock Pool

Thread #i Thread #j
Parameter Pool for A
Parameter Pool for B
…
Parameter Pool for X
Receiver Pool for all
data types

Parameter Pool for A
Parameter Pool for B
…
Parameter Pool for X
Receiver Pool for all
data types

A, B,…, and X are data types

1

3

5

7

9

11

13

1 3 5 7 9 11 13 15

Th
ro

ug
hp

ut
 (e

dg
es

/s
ec

)

Number of edges x108

Throughput Comparison

PR CC PR' CC'

Facade

Original

 Iteration definition
− Iterations are easy to identify; Facade relies on a user-provided

pair of calls to start/end iterations
− Nested iterations are supported

 Reduced execution time
 Improved scalability

0

0.2

0.4

0.6

0.8

1

1.2

1.4

3G 5G 10G 14G 19G

Normalized performance of Facade-
generated External Sort

Total time GC time Memory

	Slide Number 1

