
0
1
2
3
4
5
6
7
8

3G 5G 10G 14G 19G

M
em

or
y

U
sa

ge
 (G

B
)

Memory Usage of Facade-generated
Word Count and the original

Original Facade

 Optimizations of Big Data applications:
− Data pipeline: [Agrawal VLDB’08], Flume-Java [Chambers

PLDI’10], DryadLINQ [Yu OSDI’08]
− MapReduce-related: Hive [Thusoo ICDE’10], Panacea [Liu

CGO’10]
 Techniques for reducing runtime management costs

– [Aiken PLDI’95], [Hallenberg PLDI’02], [Hick ISMM’04]
– Immix [Blackburn PLDI’08]
– Prolific types [Shuf POPL’02]

 Techniques for reducing numbers of objects
– Object pooling and certain design patterns
– Object inlining: [Dolby PLDI’00]
– Pool-based allocation: [Lattner PLDI’05, PLDI’07]

Design a scalable and efficient system is a key challenge
to both researchers and practitioners

Facade: A Compiler and Runtime for (Almost) Object-Bounded Big Data Applications
Khanh Nguyen, Kai Wang, Yingyi Bu, Lu Fang, Jianfei Hu, Harry Xu

University of California, Irvine

Motivation

Hyracks [Borkar ICDE’11]

GPS [Salihoglu SSDBM’13]

Data Representation

Implementation and Evaluation

Conclusions
 A complete, non-intrusive package with a compiler that can

automatically transform existing programs and a runtime system that
runs on top of a JVM

 Experimental results show significant improvement in execution
time, memory consumption, and scalability

 Implemented using the Soot framework [Vallée-Rai CC’00]
 Most of the Java 7 features are supported
 40+ KLOC; 1.5 years of development
 Fast translation speed: 950 instructions per second on average Mainstream approach is to enable parallelism by using a large

number of machines
 Typical parallel frameworks such as MapReduce, Giraph, Hive, or

Pig use Java, a managed language which comes with a managed
runtime system

Related Work

Golden Rule for Scalability

Data Manipulation

GraphChi [Kyrola OSDI’12]

Native memory

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Total time Update
time

Load time GC time Memory

Page Rank

4G
6G
8G

 Data objects are stored in native memory. A memory page is a
fixed-length contiguous block of memory, obtained through the
Unsafe interface

 The layout of an object in a memory page is exactly the same as
the way the object was stored in the heap

 Each data object becomes a data record and uses absolute
memory address as its reference (pointer)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Total time Update
time

Load time GC time Memory

Connected Components

 The number of heap objects and references must not grow
proportionally with the cardinality of the dataset

 Formally, Facade guarantees a static bound:

 Heap objects are created as facades and used only for control
purposes: resolve method calls, perform dynamic type check, pass
parameters, return values,…

 A data parallel platform to run data-intensive jobs on a cluster of
shared-nothing machines

The original program
crashed in all of these

sets thus no figure

 A distributed graph processing system developed for scalable
processing of large graphs

 Improvements on Page Rank, KMeans and Random Walk:
 3-15% running time reduction 10-40% reduction in GC time
 14% space reduction

 A high-performance graph analytical framework that enables
efficient processing of large graphs on a single machine

 Normalized performance of the Facade-generated programs:
When object-orientation meets Big Data, the cost of
managed runtime system becomes the bottleneck
 Significantly reduced scalability: JVM crashes even if the size of

the processing dataset is much smaller than the heap size
 Prohibitively high memory management cost: GC time accounts for

up to 50% of the overall execution time [Bu ISMM’13]

Poor performance is inherent with the managed runtime
system and remains a serious problem despite many
optimizations from various research communities

• s : cardinality of the dataset

O(s)

• t : number of threads
• n : number of data types
• p : number of pages

O(t*n+p)

Benefits from Facade
 Smaller memory consumption
 Significantly reduced GC time

Facade Programming Model
 Breaking the long-held object-oriented programming principle:

“Objects are used both to store data and to
provide data manipulation interfaces”

 Facade makes a clear separation between data representation
and data manipulation

 Although t and p cannot be bounded statically, they are usually very
small, hence the total number of objects is “almost” statically
bounded

 The reduction is in many orders of magnitudes: in PageRank
(GraphChi) 14 billions data objects are reduced to 1363 objects

 Facade class DF
− Has only one instance field pageRef
− Does NOT contain actual data
− Contains all methods in data class D
− Its instances are controlled by bounded object pooling

x 105

 Bounded facade pooling
− A new approach to statically bound the number of DF’s instances
− Generate, for each data type, a pool whose size is the maximum

number of operands of that type required by an instruction
− At any program point, every element of a pool is available for use

 Improvement summary:
 5x reduction in GC time
 7%-28% reduction in memory

consumption (6+GB datasets)
 17% reduction in running time

(avg.) max 48%
 1.4x improvement in throughput

 Improvement summary:
 25x reduction in GC time, max 88x
 7% reduction in memory usage (avg.), max 32%
 10% reduction in running time (avg.), max 25% (External Sort)
 Scalability is significantly increased (3.8x Word Count)

Iteration-based Memory Management

 Allocation: customized, high-performance allocator
− Create a page manager per thread and per iteration to control

memory; page managers form a hierarchy
− Each page manager is associated with a pair

<iterationID, thread>
− Contiguous allocations get contiguous space to maximize data

locality
− Support mostly thread-local data allocation

 Deallocation:
− Once an iteration ends, reclamation can be safely done

concurrently on the sub-tree rooted at the current page manager

iteration_start()
…

thread[i].run() {
iteration_start()

}
…

iteration_end()

Iteration starts: create and
register a manager m which

is in main thread

Sub-iteration starts: create
and register manager ti as

child of manager m
Note that it is not required to

signal the end of the sub-
iteration

Iteration ends: memory
reclamation is started on the

sub-tree rooted at m

m

t1

t2

…

tn

<0, main>

<1, thread_1>

<2, thread_2>

<n, thread_n>

<…, thread_...>

class Professor {
int id;
Student[] students;
String name;

}

class Student {
int id;
String name;

}

Record
type Address Type Lock Fields

Professor 0x04e0 12 0 1254 0x0504 0x070a
Student[] 0x0504 25 253 9 0x0800 …
String 0x070a 4 … …

…
Student 0x0800 13 0 2541 0x0868

id

students

name

Transformation Example

class Professor {
int id;
Student[] students;
String name;

void addStudent(Student s,
int i) {

students[i] = s;

}
}

static void client
(Professor f) {

Student s = new Student();

Professor p = f;
Student t = s;

p.addStudent(t,0);

}

class Facade { long pageRef; …}

class ProfessorFacade extends Facade {
static int id_OFFSET = 0;
static int students_OFFSET = 4;
static int name_OFFSET = 8;

/* modified method’s signature */
void addStudent(StudentFacade sf, int i) {
/* release facades’ binding */
long thisRef = this.pageRef;
long sRef = sf.pageRef;

FacadeRuntime.writeArray(
thisRef, students_OFFSET, i, sRef);

}
}

static void client(ProfessorFacade pf) {
long fRef = pf.pageRef;

long sRef = FacadeRuntime.allocate
(Student_TypeID, Student_RecordSize);

StudentFacade sf = studentPool[0];
sf.pageRef = sRef;
sf.facade$init();

long pRef = fRef;
long tRef = sRef;

/* retrieve facades from pool */
ProfessorFacade pf2 = professorPool[0];
StudentFacade sf2 = studentPool[0];
/* bind facades with references */
pf2.pageRef = pRef;
sf2.pageRef = tRef;
pf2.addStudent(sf2,0);

}

 Original code Facade-generated code

Concurrency Support
 Thread-local pooling for

facade objects
 One shared lock pool

• Each object is an instance
of a special lock class

• The number of locks
simultaneously needed is
bounded by the number of
threads

Shared Lock Pool

Thread #i Thread #j
Parameter Pool for A
Parameter Pool for B
…
Parameter Pool for X
Receiver Pool for all
data types

Parameter Pool for A
Parameter Pool for B
…
Parameter Pool for X
Receiver Pool for all
data types

A, B,…, and X are data types

1

3

5

7

9

11

13

1 3 5 7 9 11 13 15

Th
ro

ug
hp

ut
 (e

dg
es

/s
ec

)

Number of edges x108

Throughput Comparison

PR CC PR' CC'

Facade

Original

 Iteration definition
− Iterations are easy to identify; Facade relies on a user-provided

pair of calls to start/end iterations
− Nested iterations are supported

 Reduced execution time
 Improved scalability

0

0.2

0.4

0.6

0.8

1

1.2

1.4

3G 5G 10G 14G 19G

Normalized performance of Facade-
generated External Sort

Total time GC time Memory

	Slide Number 1

