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e Inter-node data transfer is a CPU-1ntensive bottleneck
in distributed big data systems
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Performance breakdown of Spark’s TriangleCounting over the LiveJournal graph
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Other 63 S/D libraries

o Existing approaches

— Kryo is faster, but developer must create S/D functions
— User-defined functions are invoked for every field of every object
— Correct and efficient S/D functions are labor-intensive to write

### skyway ###
protostuff-manua
protobuf/protostuf
protostuff-graph
protostuff-runtime
protobuf/protostuff-runtime
protostuff-graph-runtime
smile/jackson/manua
cbor/jackson/manual
wobly-compact
cbor/j.son+aft.burner/databind
cbor-col/jackson/databind
smile/j.son+aft.burner/databind
smile-col/jackson/databind
thrift-compact

We want a systematic solution to reduce S/D costs o . .
Skyway outperforms all existing S/D libraries

Apache Spark 2.1.0 (released December 2016)
Skyway Approach —
—An 11-node cluster: each has 16 cores, 32GB memory, 1 SSD, connected via InfiniBand
— Four applications on four real-world graphs: LiveJournal, Orkut, UK-2005, and Twitter
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e Leads to savings in:

1. CPU time spent on runtime
reflection, and

Serializers

2. manual developer involvement
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Object domain t yway Apache Flink 1.3.2 (released August 2017)
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Serialization —An 11-node cluster: each has 16 cores, 32GB memory, 1 SSD, connected via InfiniBand
—5 TPC-H SQL Queries using 100GB of input
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— Object reference () Machine independent object data

Makes Flink run 19% faster than with built-in S/D

Challenges Solutions e Skyway 1s nowvel: the first to provide S/D-free data transfer
— Reference fields —— v Relative addresses with linear time adjustment e Skyway is efficient:

— Type representation —— v* Automated global type numbering system —Outperforms all existing S/D libraries by 2.2x — 67.3x

e Implemented in Oracle’s production JVM OpenJDK 8 build 25.71 —Improves Apache Spark by up to 73% (Java), and up to 54% (Kryo)

— Across-the-stack modifications: the object/heap layout, the classloader subsystem, the —Improves Apache Flink by 12% — 29%
production Parallel Scavenge garbage colletor e Skyway 1s practical: a JVM-based solution, applicable to all
—okyway library to interact with runtime systems JVM-based languages while requiring zero user effort






