SKYWAY: CONNECTING MANAGED HEAPS
IN DISTRIBUTED BIg DATA SYSTEMS

'University of Cahforma, Irvine
“University of Chicago

catSm cho
[l entia|latuy

e Inter-node data transfer is a CPU-1ntensive bottleneck
in distributed big data systems

1750 - — An extensive, comprehensive comparison with the existing 90 serializers

Read I/O _ m Serialization ~ m Deserialization ~ ® Network
1400 - _ Time
m Write 1/0 (ms)

Java Serializer Benchmark Set

1050 - ® Deserialization o 10000

. Serializer . .
£ 700 lSenahzatpn Tava 16, | .
250 = Computation Kryo 18, | ‘ |
0 -
Serializers éz’ S
S \ I MENENEEEEEEEEEEEEEEEEE——-—-

Performance breakdown of Spark’s TriangleCounting over the LiveJournal graph

colfe
protostuf
datakerne
kryo-manual
kryo-opt
kryo-flat-pre
avro-generic
avro-specific
wobly
kryo-flat
capnproto
fst-flat-pre
thrift
Other 63 S/D libraries

o Existing approaches

— Kryo is faster, but developer must create S/D functions
— User-defined functions are invoked for every field of every object
— Correct and efficient S/D functions are labor-intensive to write

skyway
protostuff-manua
protobuf/protostuf
protostuff-graph
protostuff-runtime
protobuf/protostuff-runtime
protostuff-graph-runtime
smile/jackson/manua
cbor/jackson/manual
wobly-compact
cbor/j.son+aft.burner/databind
cbor-col/jackson/databind
smile/j.son+aft.burner/databind
smile-col/jackson/databind
thrift-compact

We want a systematic solution to reduce S/D costs o . .
Skyway outperforms all existing S/D libraries

Apache Spark 2.1.0 (released December 2016)
Skyway Approach —
—An 11-node cluster: each has 16 cores, 32GB memory, 1 SSD, connected via InfiniBand
— Four applications on four real-world graphs: LiveJournal, Orkut, UK-2005, and Twitter

Java Serializer | Skyway 200 - LJ-WC 000 - LJ-CC 6000 - LJ-PR LJ-TC Jeo - OR-WC 1500 - OR-CC 2000 - OR-PR 16000 - OR-TC
An ObJeCt | 200 -

— § |] D
° 7] ~ 150]
Maln Idea: _ _ _ £ 100 -

transfer entire object ey Hashcode ‘ 0

e Does not invoke % Other Other al) Serializers
- . - . (GC flag, lock flag, etc.) (GC flag, lock flag, etc.)
serialization /deserialization

functions
e Leads to savings in:

1. CPU time spent on runtime
reflection, and

Serializers

2. manual developer involvement

' ’ iect i m Write I/O
Object layout in JVM apd .how an object is handled by Makes Spark run 36% and 16% faster than o
the Java Serializer and Skyway ® Deserialization

. with Java and Kryo S/D e
e Skyway vs. Conventional Data Transfer m Serialization

S J -) = Computation

enaer Sk 2 eceilver

Object domain t yway Apache Flink 1.3.2 (released August 2017)
.:!j F B NN M D-DID

Serialization —An 11-node cluster: each has 16 cores, 32GB memory, 1 SSD, connected via InfiniBand
—5 TPC-H SQL Queries using 100GB of input
g p
Network > o000 O 10000 OB gs0 Q000 QD a0000 _OF Read /O

6000 -

‘O 45000 - 7500 - i :
Deserialization & 7500 : = Write 1/O

Binary domain ‘ ‘ % 30000 - _ 4500 - . 0
‘ = 3000 : ® Deserialization
15000 - - 2500 -

0 _ o 0 _ ® Serialization
. E Machine dependent meta data, reference, etc. «» . Machine independent meta data, reference, etc. Serialivers = Computation

— Object reference () Machine independent object data

Makes Flink run 19% faster than with built-in S/D

Challenges Solutions e Skyway 1s nowvel: the first to provide S/D-free data transfer
— Reference fields —— v Relative addresses with linear time adjustment e Skyway is efficient:

— Type representation —— v* Automated global type numbering system —Outperforms all existing S/D libraries by 2.2x — 67.3x

e Implemented in Oracle’s production JVM OpenJDK 8 build 25.71 —Improves Apache Spark by up to 73% (Java), and up to 54% (Kryo)

— Across-the-stack modifications: the object/heap layout, the classloader subsystem, the —Improves Apache Flink by 12% — 29%
production Parallel Scavenge garbage colletor e Skyway 1s practical: a JVM-based solution, applicable to all
—okyway library to interact with runtime systems JVM-based languages while requiring zero user effort

