
Skyway: Connecting Managed Heaps
in Distributed Big Data Systems

Khanh Nguyen
University of California, Irvine

khanhtn1@uci.edu

Lu Fang
University of California, Irvine

lfang3@uci.edu

Christian Navasca
University of California, Irvine

cnavasca@uci.edu

Guoqing Xu
University of California, Irvine

harry.g.xu@uci.edu

Brian Demsky
University of California, Irvine

bdemsky@uci.edu

Shan Lu
University of Chicago
shanlu@uchicago.edu

Abstract

Managed languages such as Java and Scala are prevalently
used in development of large-scale distributed systems. Un-
der the managed runtime, when performing data transfer
across machines, a task frequently conducted in a Big Data
system, the system needs to serialize a sea of objects into a
byte sequence before sending them over the network. The
remote node receiving the bytes then deserializes them back
into objects. This process is both performance-ine cient
and labor-intensive: (1) object serialization/deserialization
makes heavy use of re ection, an expensive runtime opera-
tion and/or (2) serialization/deserialization functions need
to be hand-written and are error-prone. This paper presents
Skyway, a JVM-based technique that can directly connect
managed heaps of di!erent (local or remote) JVM processes.
Under Skyway, objects in the source heap can be directly
written into a remote heap without changing their formats.
Skyway provides performance bene"ts to any JVM-based
system by completely eliminating the need (1) of invoking
serialization/deserialization functions, thus saving CPU time,
and (2) of requiring developers to hand-write serialization
functions.

CCSConcepts • Information systems→Datamanage-

ment systems; • Software and its engineering→Mem-
ory management;

Keywords Big data, distributed systems, data transfer, seri-
alization and deserialization

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for pro"t or commercial advantage and that

copies bear this notice and the full citation on the "rst page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior speci"c

permission and/or a fee. Request permissions from permissions@acm.org.

ASPLOS ’18, March 24–28, 2018, Williamsburg, VA, USA

© 2018 Copyright held by the owner/author(s). Publication rights licensed

to the Association for Computing Machinery.

ACM ISBN 978-1-4503-4911-6/18/03. . . $15.00

h ps://doi.org/10.1145/3173162.3173200

ACM Reference Format:

Khanh Nguyen, Lu Fang, Christian Navasca, Guoqing Xu, Brian

Demsky, and Shan Lu. 2018. Skyway: Connecting Managed Heaps

in Distributed Big Data Systems. In Proceedings of ASPLOS ’18.

ACM,NewYork, NY, USA, 14 pages. h ps://doi.org/10.1145/3173162.

3173200

1 Introduction

Modern Big Data systems need to frequently shu#e data
in the cluster – a map/reduce framework such as Hadoop
shu#es the results of each map worker before performing
reduction on them; a data%ow system such as Spark supports
many RDD transformations that need to shu#e data across
nodes. As most of these systems are written in managed lan-
guages such as Java and Scala, data is represented as objects
in a managed heap. Transferring an object o across nodes is
complicated, involving three procedures shown in Figure 1.
(1) A serialization procedure turns the whole object graph
reachable from o into a binary sequence. This procedure re-
formats each object — among other things, it extracts the
object data, strips the object header, removes all references
stored in an object, and changes the representation of cer-
tain meta data. (2) This byte sequence is transferred to a
receiver machine. (3) A deserialization procedure reads out
the byte sequence, creates objects accordingly, and eventu-
ally rebuilds the object graph in the managed heap of the
receiver machine.

Problems While many serialization/deserialization (S/D)
libraries [3, 22, 32] have been developed, large ine ciencies
exist in their implementations. Both our own experience
(§2) and evidence from previous work [27] show that S/D
accounts for 30% of the execution time in Spark. To explain
why S/D is so costly, we discuss the handling of three key
pieces of information these procedures have to extract, trans-
fer, and reconstruct for every object reachable from o: (1)
object data (i.e., primitive-type "elds), (2) object references
(i.e., reference-type "elds), and (3) object type.
(1) Object-data access: An S/D library needs to invoke

re ective functions such as Reflection.getField and
Reflection.setField to enumerate and access every "eld
to extract, on the sender side, and then write-back, on the

Figure 1. A graphical illustration of data transfer.

receiver side, each primitive object �eld individually. In a Big
Data system, each data transfer involves many millions of
objects, which would invoke these functions for millions of
times or more. Re ection is a very expensive runtime opera-
tion. It allows the program to dynamically inspect or invoke
classes, methods, �elds, or properties without type informa-
tion available statically at the cost of time-consuming string
lookups, and is undesirable in performance-critical tasks.
(2) Type representation: Each type is represented by a spe-

cial (meta) object in a managed runtime, and is referenced by
the headers of the objects of the type. However, type refer-
ences cannot be used to represent types in a byte sequence,
because the meta objects representing the same type may
have di!erent addresses in di!erent runtimes. The Java se-
rializer represents every type by a string that contains the
name of a class and all its super classes. This design causes
meta data (i.e., type strings) to consume a huge portion of the
byte sequence transferred across the network. Furthermore,
re ection must be used to resolve the type from each string
during object re-creation on the receiver node.
(3) Reference adjustment: References contained in

reference-type �elds of transferred objects need to be
adjusted, since those objects will be placed in di!erent
addresses on the receiver node. The Java serializer uses
re ection to obtain and inline the contents of referenced
objects into the binary representation of the referencing
object. It constructs all objects reachable from o on the
receiver machine using re ection, and then sets reference
�elds with the addresses of the just created referenced
objects through re ection.

Recent Progresses Many third-party libraries have been
developed. In particular, Kryo [22] is the library recom-
mended in Spark. Kryo asks developers (1) to manually de-
�ne S/D functions for types involved in data transfer, which
speeds up object-data access, and (2) to manually register
these types in a consistent order across all nodes, which

makes it possible to use integers to represent types. Other
libraries [3, 11, 32] follow similar principles.
However, the fundamental ine"ciencies in data transfer

still remain in Kryo – the user-de�ned functions need to be
invoked for every transferred object at both the sender side
and the receiver side. Due to the extremely large number
of invocations of these S/D functions during sending and
receiving, serialization and deserialization still takes a large
portion of a data processing task’s run time.
Furthermore, tremendous burden is put on developers

who use Kryo. It is di"cult for developers to understand
how many and what types are involved, let alone consis-
tently registering these types and developing correct and
e"cient S/D functions for each type. For instance, consider
a HashMap object. Its serialization involves its key-value ar-
ray, all the key/value pairs, and every key/value object. Its
deserialization needs to recreate key and value objects, pair
them, and additionally reshu#e key/value pairs to correctly
recreate the key-value array because the hash values of keys
may have changed.

Our Solution – Skyway The key problem with existing
S/D libraries is that, with an existing JVM, there are no al-
ternative routes to transfer objects other than �rst disassem-
bling and pushing them down to a (di!erent) binary format,
and then reassembling and pulling them back up into a re-
mote heap. In this paper, we advocate to build a “skyway”
between managed heaps (shown in Figure 1) so that data
objects no longer need to be pushed down to a lower level
for transfer.
Skyway enhances the JVM, and enables object graphs to

be moved as is from heap to heap and used on a remote
node right after the move. Speci�cally, given a root object o
speci�ed by the application (e.g., the RDD object in Spark),
the Skyway-enhanced JVM performs a GC-like heap tra-
versal starting from o, copies every reachable object into
an output bu!er, and conducts lightweight adjustment to
machine-dependent meta data stored in an object without
changing the object format. This output bu!er can then be
copied as a whole directly into the remote heap and used
almost immediately after the transfer. This provides the fol-
lowing bene�ts to existing and future Big Data systems: (1)
Skyway completely eliminates the cost of accessing �elds
and types, saving computation costs; and (2) the developer
does not need to hand-write any S/D functions.
To achieve these goals, Skyway addresses the aforemen-

tioned three issues muchmore e"ciently than all the existing
S/D libraries, as discussed below.
First, Skyway, by changing the JVM, transfers every object

as a whole, which completely eliminates the need of access-
ing individual data �elds. Furthermore, since the hashcode of
an object is cached in the header of the object, transferring
the entirety of each object preserves the original hashcode of
the object, so that hash-based data structures can be used on

the receiver node without rehashing — a process that takes
a great amount of time in traditional S/D.
Second, Skyway represents types by employing an auto-

mated global type-numbering procedure – the master node
maintains a registry of all types and their IDs, and each
worker node communicates with the master to obtain IDs
for its classes upon class loading. This process enables all
classes across the cluster to be globally numbered without
any developer intervention and thus each ID can be used to
uniquely identify the same class on di�erent nodes.
Third, Skyway employs an e�cient “relativization” tech-

nique to adjust references. As objects are copied into the
output bu�er, pointers stored in them are relativized in linear
time — they are changed from absolute addresses to relative
addresses. Upon receiving the bu�er, the Skyway client on
the receiver node performs another linear scan of the input
bu�er to absolutize the relative information in the bu�er.
Skyway may push more bytes over the network than S/D

libraries, because it transfers the entirety of each object yet
S/D libraries do not transfer object headers. However, much
evidence [44] shows that bottlenecks in real systems are
shifting from I/O to computing, and hence, we believe this
design strikes the right design tradeo� — the savings on
the computation cost signi cantly outweigh the extra net-
work I/O cost incurred by the extra bytes transferred on a
modern network. Our empirical results show that, even on
a 1000Mb/s Ethernet (e.g., most data centers use networks
with higher bandwidth), transferring 50% of more data (about
100GB in total) in Spark for a real graph dataset increases
the execution by only 4% (on network and read I/O) whereas
the savings achieved by eliminating the S/D invocations are
beyond 20%.

Why Does It Work? It is important to note that Skyway
is not a general-purpose serializer. Our insight why Sky-
way would work well for Big Data processing is two-fold.
First, data processing applications frequently shu!e many
millions of objects and do so in strongly delimited phases.
Hence, sending objects in batch without changing their for-
mats provides signi cant execution e�ciency. Second, the
use of modern network technology enables extra bytes to be
quickly transferred without incurring much overhead.
We have implemented Skyway in OpenJDK 8. Our evalua-

tion on a Java serializer benchmark set JSBS [34], Spark [45],
and Flink [2] shows that (1) Skyway outperforms all the 90
existing S/D libraries on JSBS, which uses a media-content
based dataset – for example, it is 2.2× faster than Kryo and
67.3× faster than the Java serializer; (2) compared with Kryo
and the Java serializer, Skyway improves the overall Spark
performance by 16% and 36% for four representative ana-
lytical tasks over four real-world datasets; (3) for another
real-world system Flink, Skyway improves its overall perfor-
mance by 19% compared against Flink’s highly-optimized
built-in serializers.

1 class Date extends Serializable{

2 private Year4D year;

3 private Month2D month;

4 private Day2D day;

5 public Date(String year , String month , String day) {

6 this.year = Year4D.parse(year);

7 this.month = Month2D.parse(month);

8 this.day = Day2D.parse(day);

9 }

10 public String toString () {

11 return "Date [year=" + year + " month=" + month +

" day=" + day + "]";

12 }

13 }

14

15 class Year4D extends Serializable {...}

16 class Month2D extends Serializable {...}

17 class Day2D extends Serializable {...}

18 class DateParser extends Serializable {

19 /* Turn a string into a Date object */

20 Date parse(String s) {...}

21 }

22

23 class SimpleSparkJob {

24 void main(String [] args) {

25 StreamingContext ssc = new StreamingContext(args

[0], new Duration (1000));

26 DateParser parser = new DateParser ();

27 JavaRDD <String > lines = ssc.textFileStream("dates.

txt");

28 JavaRDD <Date > mapRes = lines.map(line -> parser.

parse(line));

29 List <Date > result = mapRes.collect ();

30 }

31 }

Figure 2. A simple Spark program that parses strings into
Date objects.

2 Background and Motivation

This section gives a closer examination of S/D and its cost
using Spark as an example.

2.1 Background

When Does S/D Happen? Spark conducts S/D throughout
the execution. There are two categories of S/D tasks: clo-
sure serialization and data serialization. Closure S/D occurs
between the driver and a worker. Since a Spark program is
launched by the driver, the driver needs to execute portions
of it on remote workers.
Figure 2 shows a Spark program that reads a sequence

of strings, each of which represents a date, from a text le
(Line 27). It next parses these strings by invoking a map

function on the RDD (Line 28). The map transformation
takes a lambda expression (i.e., a closure) as input, which
parses each string by invoking the parse function that turns
a string into a Date object. Finally, the RDD action collect

is invoked to bring all Date objects to the driver.
While this program is executed by the driver, Spark sched-

ules the execution of the closure (i.e., the lambda expression
passed to map) on the worker nodes. Closure serialization is
thus needed to transfer the closure and everything it needs
from the driver to each worker node. In this example, the

closure refers to the object parser created outside its scope.
Hence, parser also needs to be serialized during closure
serialization. This explains why the DateParser class needs
to implement the Java Serializable interface.
The second type of S/D is data serialization that occurs

between di erent workers or a worker and the driver. For

example, action collect would cause all Date objects on

the worker nodes to be transferred back to the driver. When

each Date object is serialized, all the (Year4D, Month2D, and

Day2D) objects directly or transitively reachable from it are

serialized as well. To shu!e data across nodes, Spark se-

rializes data objects on each node (e.g., the result of a map

operation) into disk "les with a shu!ing algorithm (e.g., sort-

based or hash-based). These "les are then sent to di erent

remote nodes where data objects are deserialized.

How Does S/DWork? The Kryo serializer requires the devel-

oper to register classes using the following code snippet:

1 SparkConf conf = new SparkConf ();

2 conf.set("spark.kryo.registrator", "org.apache.spark.

examples.MyRegistrator");

3 ...

4 public class MyRegistrator implements KryoRegistrator

{

5 public void registerClasses(Kryo kryo) {

6 kryo.register(Date.class);

7 kryo.register(Year4D.class);

8 kryo.register(Month2D.class);

9 kryo.register(Day2D.class);

10 }

11 }

The order in which these classes are registered de"nes an

integer ID for each class. Using these integer class identi"ers,

the bytes generated by Kryo do not contain strings, leading

to signi"cant space savings during data transfer. Further-

more, Kryo deserializer can now resolve types without using

re#ection — Kryo automatically generates code like

1 switch(id) {

2 case 0: return new Date();

3 case 1: return new Year4D ();

4 ...

5 }

that uses regular new instructions to create objects on the

receiving node.

However, in any real-world application, there can be a

large number of user classes de"ned (including many classes

from di erent libraries). Fully understandingwhat classes are

referenced (directly or transitively) is a very labor-intensive

process. Moreover, the developer has to manually develop

S/D functions for each of these types; without these func-

tions, the standard Java serializer would be used instead.

In both Kryo and the standard Java serializer, the num-

ber of times S/D functions are invoked is proportional to the

dataset cardinality; every data transfer can easily require sev-

eral millions of S/D invocations, taking a signi"cant fraction

of the execution time.

2.2 Motivation

To understand the S/D costs in the real world, we have per-

formed a set of experiments on Spark. We execute Spark on a

small cluster of 3 worker nodes, each with 2 Xeon(R) CPU E5-

2640 v3 processors, 32GB memory, 1 SSD, running CentOS

6.8. These three nodes are part of a large cluster connected

via In"niBand. We ran a TriangleCounting algorithm over

the LiveJournal graph [4] that counts the number of triangles

induced by graph edges. It is widely used in social network

analysis for analyzing the graph connectivity properties [38].

We used Oracle JDK 8 (build 25.71) and let each slave run

one single executor – the single-thread execution on each

slave made it easy for us to measure the breakdown of per-

formance. The size of the input graph was around 1.2GB and

we gave each JVM a 20GB heap – a large enough heap to

perform in-memory computation – as is the recommended

practice in Spark. Tungsten sort was used to shu!e data.

T
im

e
(s

ec
)

T
ra

n
sf

er
re

d
 D

at
a

S
iz

e
(M

B
)

(a) (b)
Serializers Serializers

Remote Bytes

Local Bytes

Read I/O

Write I/O

Deserialization

Serialization

Computation
0

350

700

1050

1400

1750

0

3500

7000

10500

14000

17500

Figure 3. Spark S/D costs: (a) performance breakdown when
running TriangleCounting over the LiveJournal graph on
three nodes; (b) bytes shu�ed under the two serializers;
Local Bytes and Remote Bytes show the number of bytes

fetched from the local and remote RDD partitions.

Figure 3(a) shows Spark’s performance under the Kryo

and Java serializers. Before transferring data over the net-

work, Spark shu�es and sorts records, and saves the sorted

records as disk �les. The cost is thus broken down into �ve

components: computation time, serialization time (measured

as time spent on turning RDD records into byte sequences),

write I/O (measured as the time writing bytes onto disk), de-

serialization time (measured as time spent on reconstructing

RDD record objects from bytes), and read I/O (measured as

time reading bytes). Since each JVM has a large heap com-

pared to the amount of data processed, the garbage collection

cost is less than 2% and thus not shown on the �gure. The

network cost is negligible and included in the read I/O.

One observation is that the invocation of S/D functions

takes a huge portion (more than 30%) of the total execution

time under both Kryo and the Java serializer. Under Kryo,

the invocations of the serialization and deserialization take

18.2% and 14.1% of the total execution time, respectively;

under the Java serializer, these two take 16.3% and 17.8%.

The actual write and read I/O time is much shorter in com-

parison, taking 1.4% and 1.1% under Kryo, and 2.3% and

S
k
y
w

a
y

R
u

n
tim

e
(J

V
M

)

App

Skyway lib

Heap

C

B

C

D

D B

Heap

A

C

D

A C D

Cluster

Distributed Runtime Distributed Runtime

Node A Node B
App

Skyway lib

Native Native

Figure 4. Skyway’s system architecture. Purple and orange
rectangles represent input (in-heap) bu ers and output (na-

tive) bu ers, respectively; objects !ow along red arrows.

9.9% under the Java serializer. The read I/O is signi"cantly
increased under the Java serializer primarily because the
Java serializer needs to read many type strings. For example,
serializing an object containing a 1-byte data "eld can gen-
erate a 50-byte sequence [40] – in addition to its own "eld
and the "elds in its superclasses, the serializer needs to (1)
write out the class name and (2) recursively write out the
description of the superclasses of the object’s class until it
reaches java.lang.Object (i.e., the root of all classes). This
is validated by the “Remote Bytes” results in Figure 3(b).
Another observation is that the S/D process is a bottle-

neck that cannot be easily removed by upgrading hardware.
Unlike other bottlenecks such as GC (that can be eliminated
almost entirely by using a large heap) or I/O (that can be
signi"cantly reduced by using fast SSDs and In"niBand net-
works), S/D is a memory- and compute-intensive process
that turns heap objects into bytes and vice versa. The ine#-
ciencies inherent in the process strongly call for system-level
optimizations.

3 Design Overview

This section provides an overview of Skyway, explaining
how Skyway is designed towards three goals — correctness,
e#ciency, and ease of integration.
Figure 4 shows the system architecture of Skyway, includ-

ing three major parts. First, to achieve correct data transfer,
Skyway modi"es the JVM to conduct object traversal, object
cloning, and adjustment within each cloned object. Second,
to achieve e cient data transfer, Skyway carefully maintains
input and output bu ers, and streams bu er content across
machines. Third, to make Skyway easy to use, Skyway li-
brary provides a set of easy-to-use and backward-compatible
APIs for application developers.

3.1 Correctness

Skyway adjusts machine-speci"c parts of each transferred
object to guarantee execution correctness. First, Skyway
"lls the type "eld of an object header with an automatically
maintained global type-ID during sending, and later replaces
it with the correct type representation on the receiving node.

The details are presented in §4.1. Second, Skyway replaces
the references stored in all non-primitive "elds of an object
with relativized references during sending, and turns them
back to the correct absolute references during receiving. The
details are presented in §4.2. Finally, certain meta data such
as GC bits and lock bits need to be reset when objects are
moved to another machine. Skyway resets these !ags at
sending, and does not need to access them at receiving.
Skyway also provides support for heterogeneous clusters

where JVMs on di erent machines may support di erent ob-
ject formats. If the sender and receiver nodes have di erent
JVM speci"cations, Skyway adjusts the format of each object
(e.g., header size, pointer size, or header format) when copy-
ing it into the output bu er. This incurs an extra cost only on
the sender node while the receiver node pays no extra cost
for using the transferred objects. For homogeneous clusters,
such platform-adjustment cost is not incurred on any nodes.
The only assumption Skyway uses is that the sender and the
receiver use the same version of each transfer-related class –
if two versions of the same class have di erent "elds, object
reading would fail. However, this assumption is not unique
for Skyway; it needs to hold for all other serializers as well.

3.2 E ciency

Skyway uses a GC-like traversal to discover the object graph
reachable from a set of root objects. To improve e#ciency,
Skyway uses bu ering — Skyway copies every object en-
countered during the traversal into a bu er on the sending
node (i.e., output bu er) and streams the bu er content to
the corresponding bu er(s) on the receiving node (i.e., input
bu er). Both output and input bu ers are carefully designed
for e#ciency concerns. Multi-threaded data transfer is also
supported (cf. §4).
Skyway output bu ers are segregated by receivers — ob-

jects with the same destination are put into the same output
bu er. Only one such output bu er exists for each destina-
tion. The output bu er can be safely cleared after its objects
are sent. Skyway input bu ers are segregated by senders,
so that data objects coming from di erent senders can be
written simultaneously without synchronization. Note that
the heap of a receiver node may actually contain multiple
input bu ers for each sender, each holding objects sent in a
di erent round of shu$ing from the sender. Skyway does
not reuse an old input bu er unless the developer explicitly
frees the bu er using an API – frameworks such as Spark
cache all RDDs in memory and thus Skyway keeps all input
bu ers.
Output bu ers are located in o!-the-heap native memory

– they will not interfere with the GC, which could reclaim
data objects before they are sent if these bu ers were in the
managed heap. Input bu ers are allocated from the managed
heap so that data coming from a remote node is directly writ-
ten into the heap and can be used right away. Furthermore,
while each input bu er is shown as consuming contiguous

heap space in Figure 4, we allow it to span multiple small
memory chunks for two reasons. First, due to streaming, the
receiver may not have the knowledge of the number of sent
bytes, and hence, determining the input-bu�er size is di�cult.
Second, allocating large contiguous space can quickly lead to
memory fragmentation, which can be e�ectively mitigated
by using smaller memory chunks (§4.3).
Streaming is an important feature Skyway provides for

these bu�ers: for an output bu�er, it is both time-ine�cient
and space-consuming if we do not send data until all ob-
jects are in; for an input bu�er, streaming would allow the
computation to be performed in parallel with data transfer.
Supporting streaming creates many challenges, e.g., how to
adapt pointers without multiple scans and how to manage
memory on the receiver node (§4.2).

3.3 Ease of Integration

Skyway aims to provide a simple interface for application de-
velopers. Skyway should support not only the development
of brand new systems but also easy S/D library integration
for existing systems such as Spark. To this end, Skyway pro-
vides a set of high-level Java APIs that are directly compatible
with the standard Java serializer.
Skyway provides SkywayObjectOutputStream and

SkywayObjectInputStream classes that are subclasses
of the standard ObjectOutputStream and Object-

InputStream. These two classes create an interface for
Skyway’s (native) implementation of the readObject

and writeObject methods. A SkywayObjectOutput-

Stream/SkywayObjectInputStream object is associated
with an output/input bu�er. We have also created our
SkywayFileOutputStream/SkywayFileInputStream and
SkywaySocketOutputStream/SkywaySocketInputStream
classes – one can easily program with Skyway in the same
way as programming with the Java serializer.
Switching a program from using its original library to

using Skyway requires light code modi cations. For example,
we do not need to change object-writing/reading calls such
as stream.writeObject(o) at all. The only modi cation is
to (1) instantiate stream to be a SkywayFileOutputStream
object instead of any other type of ObjectOutputStream
objects and (2) identify a shu!ing phasewith anAPI function
shuffleStart. Since all of our output bu�ers need to be
cleared before the next shu!ing phase starts (§4), Skyway
needs a mark from the developer to know when to clear
the bu�ers. Identifying shu!ing phases is often simple –
in many systems, a shu!ing phase is implemented by a
shuffle function and the developer can simply place a call
to shuffleStart in the beginning of the function. Also note
that, user programs written to run on Big Data systems, such
as the one in Figure 2, mostly do not directly use S/D libraries
and hence can bene t from Skyway without changes.
Finally, Skyway provides an interface that allows devel-

opers to easily update some object elds after the transfer,

such as re-initializing some elds for semantic reasons. For
example, the code snippet below updates eld timestamp in
the class Recordwith the value returned by the user-de ned
function updateTimeStamp when a Record object is trans-
ferred. Of course, we expect this interface to be used rarely —
the need to update object data content after a transfer never
occurs in our experiments.

1 /* Register the update function */

2 registerUpdate(Record.class , Record.class.getField("

timeStamp"), SkywayFieldUpdateFunctions.

getFunction(SkywayUpdate.class , "updateTimeStamp"

, "()[B");

3 ...

4 class SkywayUpdate{

5 /*The actual update function */

6 public byte[] updateTimeStamp (){

7 return new byte []{0};

8 }

9 }

4 Implementation

We implemented Skyway in Oracle’s production JVM Open-
JDK 1.8.0 (build 25.71). In addition to implementing our ob-
ject transfer technique, we have modi ed the classloader
subsystem, the object/heap layout, and the Parallel Scavenge
garbage collector, which is the default GC in OpenJDK 8. We
have also provided a Skyway library for developers.

4.1 Global Class Numbering

Skyway develops a distributed type-registration system that
automatically allows di�erent representations of the same
class on di�erent JVM instances to share the same integer ID.
This system completely eliminates the need of using strings
to represent types during data transfer (as in the standard
Java serializer) or the involvement of human developers to
understand and register classes (as in Kryo).
Skyway type registration runs inside every JVM and main-

tains a type registry, which maps every type string to its
unique integer ID. The driver JVM assigns IDs to all classes;
it maintains a complete type registry covering all the classes
that have been loaded in the cluster and made known to the
driver since the computation starts. Every worker JVM has
a registry view, which is a subset of the type registry on the
driver; it checks with the driver to obtain the ID for every
class that it loads and does not yet exist in the local registry
view. An example of these registries is shown in Figure 5.
Algorithm 1 describes the algorithms running on the dri-

ver and worker JVMs. The selection of the driver is done by
the user through an API call inserted in the client code. For
example, for Spark, one can naturally specify the JVM run-
ning the Spark driver as the Skyway driver, and all the Spark
worker nodes run Skyway workers. Fault tolerance is pro-
vided by the application – e.g., upon a crash, Spark restarts
the system on the Skyway-equipped JVMs; Skyway’s driver
JVM will be launched on the node that hosts Spark’s driver.

Worker A

TypeString ID

1

2

Òjava.lang.ObjectÓ

Òorg.apache.spark.

rdd.RDDÓ

Òjava.lang.StringÓ 5

Registry View A

klass for Òjava.lang.ObjectÓ

...1

...5

klass for Òjava.lang.StringÓ

...

tID Old Contents

Worker B

TypeString ID

1
5

Òjava.lang.ObjectÓ

Òjava.lang.StringÓ

120

Registry View B

klass for Òjava.lang.ObjectÓ

...1

...120

klass for Òorg.apache...TaskÓ

...

tID Old Contents

Òorg.apache.spark.

scheduler.TaskÓ

TypeString ID

1

2

4

Òjava.lang.ObjectÓ

Òorg.apache.spark.

rdd.RDDÓ

Òjava.util.HashMapÓ

...

3
Òjava.util.HashSetÓ

Òjava.lang.StringÓ 5
...

Òorg.apache.spark.

scheduler.TaskÓ
120

Type Registry

Master

Cluster

Figure 5. Type registries used for global class numbering.

At the beginning, the driver populates the registry by scan-
ning its own loaded classes after the JVM �nishes its startup
logic (Lines 4 – 8). Next, the driver switches to background
by running a daemon thread that listens on a port to process
lookup requests from the workers (Lines 10 – 19).
Skyway uses a pull-based communication between the

driver and workers. Upon launching a worker JVM, it �rst
requests (Line 22) and obtains (Line 12) the current complete
type registry from the driver through a “REQUEST_VIEW”
message. This provides each worker JVM with a view of all
classes loaded so far in the cluster at its startup. The rationale
behind this design is that most classes that will be needed by
this worker JVM are likely already registered by the driver
or other workers. Hence, getting their IDs in a batch is much
more e cient than making individual remote-fetch requests.
We modify the class loader on each worker JVM so that

during the loading of a class, the loader obtains the ID for the
class. The loader �rst consults the registry view in its own
JVM. If it cannot �nd the class, it goes on to communicate
with the driver (Lines 29 – 34) by a “LOOKUP” message with
the class name string. The driver returns the ID if the string
exists in its own registry or creates a new ID and registers it
with the class name (Line 18). Once the worker receives this
ID, it updates its registry view (Line 34). Finally, the worker
JVM writes this ID into the meta object of the class (Line 35).
In the JVM terminology, a meta object is called a “klass” (as
shown in Figure 5). We add an extra �eld in each klass to
accommodate its ID.
During deserialization, if we encounter an unloaded class

on the worker JVM, Skyway instructs the class loader to load
the missing class since the type registry knows the full class
name. While other options (e.g., low-collision hash functions
such as the MD and SHA families) can achieve the same goal
of assigning each class a unique ID, Skyway cannot use them
as they cannot be used to recover class names.
Comparing with the standard Java serializer that sends

a type string over the network together with every object,
Skyway sends a type string at most once for every class on
each machine during the whole computation. Naturally, the
number of strings communicated under Skyway is several
orders-of-magnitude smaller. Comparing with Kryo, Skyway

Algorithm 1: Driver and worker algorithms for global
class numbering.

1 /* Driver Program */

2 /*Part 1: right after the JVM starts up*/

3 JVMStartUp() /*Normal JVM startup logic*/

4 /*Initialize the type registry*/

5 globalID← 0

6 registry ← EMPTY_MAP

7 foreach class k loaded in the driver JVM do
8 registry ← registry ∪ {(Name(k), globalID++)}

9 /*Part 2: a daemon thread that constantly listens*/

10 while Messagem = ListenToWorkers() do
11 ifm .type == “REQUEST_VIEW” then
12 SendMsg(m .workerAddr , registry)

13 else ifm .type == “LOOKUP” then
14 /*The content of a “LOOKUP” message from worker to driver is a

class string*/

15 id ← LookUp(registry,m .content)

16 if id == Null then
17 id ← globalID++

18 registry ← registry ∪ {(m .content, id)}

19 SendMsg(m .workerAddr , id)

20 /*Worker Program*/

21 /* Part 1: inside the JVM startup logic*/

22 SendMsg(driverAddr , ComposeMsg(“REQUEST_VIEW”, Null, myAddr))

23 Messagem = ListenToDriver()

24 /*The content of a “LOOKUP” message is the registry map*/

registryView ←m .content

25 /* Part 2: after the class loading routine*/

26 clsName← GetClassName()

27 metaObj ← LoadClass(clsName)

28 id← LookUp(registryView, clsName)

29 if id == Null then
30 SendMsg(driverAddr , ComposeMsg(“LOOKUP”, clsName, myAddr))

31 Messagem = ListenToDriver()

32 /*The content of a message from driver to worker is an ID*/

33 id ← m.content

34 registryView ← registryView ∪ {(clsName, id)}

35 WriteTID(metaObj, id)

automatically registers all classes, and eliminates the need
for developers to understand what classes will be involved in
data transfer, leading to signi�cantly reduced human e!ort.

4.2 Sending Object Graph

Overview When writeObject(root) is invoked on a
SkywayObjectOutputStream object, Skyway starts to tra-
verse and send the object graph reachable from root. Algo-
rithm 2 describes the single-threaded logic of copying the
object graph reachable from a user-speci�ed root, and we
discuss the multi-threaded extension later in this section.
At a high level, Skyway mimics a BFS-based GC traversal.

It maintains a queue gray holding records of every object
that has been visited but not yet processed, as well as the
location addr at which this object will be placed in the output
bu!er ob. Every iteration of the main loop (Line 8) processes
the top record in gray and conducts three tasks.
First, based on the object-address pair (s , addr) retrieved

from gray, an object s is cloned into bu!er ob at a location
calculated from addr (Line 10). CloneInBuffer would also

Algorithm 2: Copying the object graph reachable from
object root and relativizing pointers for a single thread.

Input: Shu ing phase ID sID, a top object root, output bu!er ob

1 ob.allocableAddr ← 0

2 Wordw ← Read(root, OFFSET_BADDR)

3 pID← HighestByte(w)

4 /*root has not been visited in the current phase*/

5 if pID < sID then
6 /*gray is a list of pairs of objects and their bu!er addresses*/

7 gray ← {(root, ob.allocableAddr)}

8 while gray , ∅ do
9 Object-Address pair (s, addr) ← RemoveTop(gray)

10 CloneInBuffer(s , ob, addr − ob. ushedBytes)

11 /*Update the clone of s in the bu!er*/

12 Write(addr , OFFSET_BADDR, 0)

13 ResetMarkBits(addr)

14 Write(addr , OFFSET_KLASS, s .klass.tID)

15 foreach Reference-typed �eld f of s do
16 Object o ← s .f

17 if o ,Null then
18 Word v ← Read(o, OFFSET_BADDR)

19 phaseID← HighestByte(v)

20 if phaseID < sID then
21 /* o has not been copied yet*/

newAddr ← ob.allocableAddr

22 Write(o, OFFSET_BADDR, Compose(sID,

newAddr))

23 PushTo0eue(gray, {(o, newAddr)})

24 ob.allocableAddr += GetSize(o)

25 else
26 newAddr ← Lowest7Bytes(v)

27 Write(addr , OFFSET(f), newAddr)

28 else
29 oldAddr ← Lowest7Bytes(w)

30 WriteBackwardReference(oldAddr)

31 SetTopMark()

adjust the format of the clone if Skyway detects that the re-

ceiver JVM has a di!erent speci"cation from the sender JVM,

following a user-provided con"guration "le that speci"es the

object formats in di!erent JVMs. Second, the header of the

clone is updated (Lines 12 – 22). Third, for every reference-

typed "eld f of s , Skyway pushes the referenced object o

into the working queue gray if o has not been visited yet and

then updates f with a relativized address (i.e., o’s position in
output bu!er), which will enable a fast reference adjustment

on the receiver machine (Lines 15 – 27).

As objects are copied into the bu!er, which is in native

memory, the bu!er may be #ushed (i.e., the streaming pro-
cess). A #ushing is triggered by an allocation at Line 10 —

the allocation "rst checks whether the bu!er still has space

for the object s; if not, the bu!er ob is #ushed and the value

of ob. ushedBytes is increased by the size of the bu!er.

Reference Relativization Imagine that a reference "eld f

of an object s points to an object o. Skyway needs to adjust

f in the output bu!er, as o may be put at a di!erent address

on the receiver node. Skyway replaces the cloned "eld f

with the relative address in ob where o will be cloned to. This

will allow the receiver node to easily calculate the correct

absolute value for every reference in an input bu!er, once

the input bu!er’s starting address is determined.

We "rst describe the overall relativization algorithm, and

then discuss how Skyway addresses the three challenges

caused by streaming and multi-phase data shu ing.

As shown on Lines 15 – 27 of Algorithm 2, for each

reference-type "eld s . f , Skyway follows the reference to

"nd the object (o). Skyway determines whether o has been

visited in the current data-shu ing phase; details are dis-

cussed shortly. If not (Line 20), we know o will be cloned

to the end of the output bu!er at location ob.allocableAddr .

We use this location to "ll the baddr "eld of o (Line 22), and

bump up ob.allocableAddr by the size of o to keep tracking

the starting address of the next cloned object in ob. If o has

been visited (Line 26), we retrieve its location in the out-

put bu!er from the lowest seven bytes of the baddr "eld

in its object header, which we will explain more later. We

then update the clone of f with this bu!er location newAddr

at which the clone of o will be or has already been placed

(Line 27).

The "rst challenge is related to streaming. When Skyway

tries to update f with the output-bu!er location of o’s clone

(f points to o), this clone may have been streamed out and

no longer exists in the physical output bu!er. Therefore, Sky-

way has to carefully store such bu!er-location information,

making it available throughout a data-shu ing phase. Sky-

way saves the bu!er location in the header of the original

object, not the clone, using an extra "eld baddr. The modi-

"ed object layout is shown in Figure 6(a). When o is reached

again via a reference from another object o′, the baddr in o

will be used to update the reference in the clone of o′.

The second challenge is also related to streaming. The

bu!er location stored in baddr of an object s and in its record

in gray-queue both represent the accumulative bytes that
have been committed to other objects in output bu!er before

s . However, when Skyway clones o into the bu!er, it needs to

account for the streaming e!ect that the physical bu!er may

have been #ushed multiple times. Therefore, Skyway sub-

tracts the number of bytes previously #ushed ob. ushedBytes

from addr when computing the actual address in the bu!er

to which s should be copied (Line 10).

The third challenge is due to multi-phase data shu ing.

Since one object may be involved in multiple phases of

shu ing, we need to separate the use of its baddr "eld

for di!erent shu ing phases. Skyway employs an sID to

uniquely identify a shu ing phase. Whenever Skyway up-

dates the baddr "eld, the current sID is written to as a pre"x

to the highest byte of baddr. Thus, Skyway can easily check

whether the content in a baddr "eld is computed during the

same phase of data shu ing (i.e., valid) or an earlier phase
(i.e., invalid). Examples are on Lines 2 – 5 and Lines 19 –
20 of Algorithm 2. In the former case, if root has already

been copied in the same shu ing phase (due to a copy proce-

dure initiated by another root object), Skyway simply creates

0 8 16 24 32 40 48 bytes56

mark klass

array size

padding data payload

baddr

20 ...

Integer[3]

klass for ÒInteger[]Ó

tID

... 20 3 0 1024 2048 40960 ... 20 3 0 1024 2048 40960 ...

(a)

(b)

Output buffer for file a.sort.result

Figure 6. Skyway object layout in the heap (a) and an out-
put bu er (b). This is an Integer array of three elements

on a 64-bit HotSpot JVM. mark contains object locks, hash

code of the object, and GC bits. klass points to the meta

object representing the object’s class. What follows is the

data payload – three references to Integer objects. baddr

and tID are both added by Skyway.

a backward reference pointing to its location in the bu er
(Line 30). Skyway provides an API function shuffleStart

that can be used by developers to mark a shu!ing phase.

sID is incremented when shuffleStart is invoked.

Header Update Lines 12 – 14 update the header of the

cloned object in bu er. Following Figure 6, Skyway "rst

clears the baddr "eld of the cloned object; this "eld will be

used later to restore the object on the receiver side. Second,

Skyway processes the mark word in the header, resetting the

GC and lock bits while preserving the object hashcode. Since

hashcodes are used to determine the layout of a hash-based

data structure (e.g., HashMap or HashSet), reusing them on

the receiver side enables the immediate reuse of the data

structure layout without rehashing. Third, Skyway replaces

the klass pointer with the type ID stored in the klassmeta

object (Line 14).

Root Object Recognition After copying all objects reach-

able from root into the bu er, we set a top mark, which is a
special byte indicating the starting point of the next top-level

object. The reason for setting this mark is the following. For

the original implementation of writeObject, an invocation

of the function on a top object would in turn invoke the

function itself recursively on the "elds of the object to seri-

alize the referenced objects. The deserialization process is

exactly a reverse process – each invocation of readObject

in the deserialization processes the bytes written in by its

corresponding invocation of writeObject in serialization.

However, Skyway’s implementation of writeObject works

in a di erent way – one invocation of the function on a

top object triggers a system-level graph traversal that "nds

and copies all of its reachable objects. Similarly, Skyway’s

readObject also reads one object from the byte sequence

instead of recursively reading out all reachable objects.

Although on the receiver side we can still compute all

reachable objects for a root, this computation also needs a

graph traversal and is time-consuming. As an optimization,

we let the sender explicitly mark the root objects so that the

receiver-side computation can be avoided. This is achieved

by top marks. With these top marks, Skyway can easily skip

the lower-level objects in the middle and "nd the next top

object. Note that this treatment does not a ect the semantics

of the program – all the data structures reachable from top

objects are recovered by the system, not by the application

APIs.

Support for Threads Algorithm 2 does not work in cases

that multiple threads on one node try to transfer the same

object concurrently (i.e., shared objects). Since each data-
transfer thread has its own output bu er and the baddr "eld

of a shared object can only store the relative bu er address

for one thread t at a time, when other threads visit the object

later, they would mistakenly use this address that is speci"c

to t . To solve the problem, we let the lower seven bytes of

baddr store both stream/thread ID (with the two highest

bytes) and relative address (with the "ve lowest bytes).

When an object is "rst visited by t , t ’s thread ID is written

into baddr together with the address speci"c to t ’s bu er.

When the object is visited again, Skyway "rst checkswhether

the ID of the visiting thread matches the thread ID stored

in its baddr. If it does, baddr of the object is used; other-

wise, Skyway switches to a hash table-based approach – each
thread maintains a thread-local hash table; the object and its

bu er address for the thread are added into the hash table

as a key and a value. Compare-and-swap (CAS) is used to

provide thread safety when updating each baddr.

This approach prevents a thread frommistakenly using the

object’s bu er address for another thread. An object will have

distinct copies in multiple output bu ers when visited by

di erent threads; these copies will become separate objects

after delivered to a remote node. This semantics is consistent

with that of the existing serializers.

4.3 Receiving Object Graph

With the careful design on sending, the receiving logic is

much simpler. To receive objects from a sender, the receiver

JVM "rst prepares an input bu er, whose size is user-tunable,

for the sender in its managed heap to store the transferred

objects. A subtle issue here is that a sender node may use

multiple streams (in multiple threads) to send data to the

same receiver node simultaneously. To avoid race conditions,

the receiver node creates an input bu er for each stream of

each sender so that di erent streams/threads can transfer

data without synchronizations. We create oversized bu ers

to "t objects whose size exceeds that of a regular bu er.

After the input bu er is "lled, Skyway performs a linear

scan of the bu er to absolutize types and pointers. For the

klass "eld of each object, Skyway queries the local registry

view to get the correct klass pointer based on the type ID

and writes the pointer into the "eld. For a relative address

a stored in a reference �eld, Skyway replaces it with a + s
where s is the starting address of this input bu er.
There is one challenge related to streaming. Since Skyway

may not know the total size of the incoming data while

allocating the bu er, one bu er of a �xed length may not
be large enough. Skyway solves this by supporting linked
chunks – a new chunk can be created and linked to the old
chunk when the old one runs out of space. Skyway does
not allow an object to span multiple chunks for e!ciency.
Furthermore, when a bu er contains multiple chunks, the
address translation discussed above needs to be changed.
We �rst need to calculate which chunk i a relative address
a would fall in. Then, because previous chunks might not
be fully �lled, we need to calculate the o�set of a in the i-
th chunk. Suppose si is the starting address of chunk i and
hence, si + o�set is the �nal absolute address for a. This
address will be used to replace a in each pointer �eld.
As each input bu er corresponds to a distinct sender, we

can safely start the computation to process objects in each
bu er for which streaming is �nished. This would not create
safety issues because objects that come from di erent nodes
cannot reference each other. However, we do need to block
the computation on bu ers into which data is being streamed
until the absolutization pass is done.

Interaction with GC After receiving the objects, it is im-
portant for the Skyway client on the receiver JVM to make
these objects reachable in the garbage collection. Skyway
allocates all input bu ers in the old generation (tenured) of
the managed heap. In Skyway, we use the Parallel Scavenge
GC (i.e., the default GC in OpenJDK 8), which employs a card
table that groups objects into �xed-sized buckets and tracks
which buckets contain objects with young pointers. There-
fore, we add support in Skyway that updates the card table
appropriately to represent new pointers generated from each
data transfer.

5 Evaluation

To thoroughly evaluate Skyway, we have conducted three
sets of experiments, one on a widely-used suite of bench-
marks and the other two on widely-deployed systems Spark
and Flink. The �rst set of experiments focuses on comparing
Skyway with all existing S/D libraries – since most of these
libraries cannot be directly plugged into a real system, we
used the Java serializer benchmark set (JSBS) [34], which was
designed speci�cally to evaluate Java/Scala serializers, to un-
derstand where Skyway stands among existing S/D libraries.
JSBS was initially designed to assess single-machine S/D.
We modi�ed this program to make it work in a distributed
setting; details are discussed shortly.
In the second and third set of experiments, we modi�ed

the Spark and Flink code to replace the use of Kryo and the
Java serializer (in Spark) and built-in serializers (in Flink)

*** skyway ***

colfer

protostuff

protostuff−manual

protobuf/protostuff

datakernel

protostuff−graph

protostuff−runtime

protobuf/protostuff−runtime

protostuff−graph−runtime

kryo−manual

smile/jackson/manual

kryo−opt

kryo−flat−pre

avro−generic

cbor/jackson/manual

avro−specific

wobly

kryo−flat

wobly−compact

cbor/jackson+afterburner/databind

capnproto

cbor−col/jackson/databind

smile/jackson+afterburner/databind

smile−col/jackson/databind

thrift−compact

fst−flat−pre

thrift

Other 3 S/D libraries

0 5000 10000
Time (ms)

Component 1−Network 2−Deserialization 3−Serialization

Figure 7. Serialization, deserialization, and network perfor-
mance of di erent S/D libraries. Although we have compared
Skyway with 90 existing libraries, we include in this table
Skyway and 27 fastest-performing libraries. The last bar is a
placeholder of the 63 libraries that perform slowly.

with Skyway in order to assess the bene�t of Skyway to real-
world distributed systems. All of our experiments were run
on a cluster with 11 nodes, each with 2 Xeon(R) CPU E5-2640
v3 processors, 32GB memory, 1 100GB SSD, running CentOS
6.8 and connected by a 1000Mb/s Ethernet. Each node ran
8 job instances. The JVM on each node was con�gured to
have a 30GB heap.

5.1 Java Serializer Benchmark Set

The JSBS contains several workloads under which each se-
rializer and deserializer is repeatedly executed. Each work-
load contains several media content objects which consist
of primitive int and long elds as well as reference-type
 elds. The driver program creates millions of such objects,
each of which is around 1KB in JSON format. These objects
are serialized into in-memory byte arrays, which are then
deserialized back to heap objects. To understand the cost
of transferring the byte sequences generated by di!erent
serializers, we modi ed the benchmark, turning it into a
distributed program – each node serializes these objects,
broadcasts the generated bytes to all the other nodes, and
deserializes the received bytes back into objects. To execute
this program, we involved ve nodes and executed this pro-
cess 1000 times repeatedly. The average S/D time for each
object and the network cost are reported.
We have compared Skyway exhaustively with 90 existing

S/D libraries. Due to space constraints, we excluded from the

Graphs #Edges #Vertices Description

LiveJournal [5] 69M 4.8M Social network

Orkut [18] 117M 3M Social network

UK-2005 [6] 936M 39.5M Web graph

Twitter-2010[23] 1.5B 41.6M Social network

Table 1. Graph inputs for Spark.

paper 63 slower libraries whose total S/D time exceeds 10
seconds. The performance of the fastest 28 libraries is shown
in Figure 7. Skyway, without needing any user-de ned S/D
functions, is the fastest of all of them. For example, it is 2.2×
faster than Kryo-manual, which requires manual develop-
ment of S/D functions. It is more than 67× faster than the
Java serializer, which is not shown in the gure.
Colfer [11] is the only serializer whose performance is

close to (but still 1.5× slower than) that of Skyway. It employs
a compiler colf(1) to generate serialization source code from
schema de nitions to marshal and unmarshal data structures.
Hence, the use of colf(1) requires user-de ned schema of data
formats, which, again, creates a practicality obstacle if data
structures are complicated and understanding their layouts
is a daunting task.
Skyway’s faster S/D speed is achieved at the cost of greater

numbers of bytes serialized. For example, Skyway generates,
on average, 50% more bytes than the existing serializers. The
details of the numbers of bytes are omitted from the paper
due to space constraints. Note that the increased data amount
does not cause the network cost to change much, whereas
the computation cost in S/D is signi cantly reduced.

5.2 Improving Spark with Skyway

Experience We have modi ed Spark version 2.1.0 (released
December 2016) to replace the use of Kryo-manual with
the Skyway library. Spark was executed under Hadoop
version 2.6.5 and Scala version 2.11. Our experience
shows that the library replacement was rather straight-
forward – to use Skyway, we created a Skyway serial-
izer that wraps the existing Input/OutputStream with our
SkywayInput/OuputStream objects. We modi ed the Spark
con guration (spark.serializer) to invoke the Skyway serial-
izer instead of Kryo. Since data serialization in Spark shuf-
!es orders of magnitude more data than closure serializa-
tion, we only used Skyway for data serialization. The Java
serializer was still used for closure serialization. The en-
tire SkywaySerializer class contains less than 100 lines of
code, most of which was adapted directly from the existing
JavaSerializer class. The number of lines of new code we
wrote ourselves was only 10: 2 lines to wrap the I/O stream
parameters, 3 lines to modify calls to readObject, and 5
lines to specify tuning parameters (e.g., bu"er size).
We ran Spark with four representative programs: Word-

Count (WC), PageRank (PR), ConnectedComponents (CC),
and TriangleCounting (TC). WordCount is a simple MapRe-
duce application that needs only one round of data shu#ing.

Sys Overall Ser Write Des Read Size

Kryo 0.39 ∼ 0.94 0.33 ∼ 0.89 0.12 ∼ 0.83 0.11 ∼ 0.55 0.01 ∼ 0.03 0.31 ∼ 1.09
(0.76) (0.59) (0.61) (0.26) (0.02) (0.52)

Skyway 0.27 ∼ 0.92 0.19 ∼ 1.29 0.12 ∼ 1.61 0.04 ∼ 0.43 0.01 ∼ 0.05 0.91 ∼ 3.13
(0.64) (0.62) (0.97) (0.16) (0.02) (1.15)

Table 2. Performance summary of Skyway and Kryo on
Spark: normalized to baseline (Java serializer) in terms of
Overall running time, Serialization time,Write I/O time,
and Deserialization time, Read I/O time (including the net-
work cost), and the Size of byte sequence generated. A lower
value indicates better performance. Each cell shows a per-
centage range and its geometric mean.

The other three programs are iterative graph applications
that need to shu#e data in each iteration. We used four real-
world graphs as input – LiveJournal (LJ) [4], Orkut (OR) [18],
UK-2005 (UK) [6], and Twitter-2010 (TW) [23]; Table 1 lists
their details.
For PageRank over Twitter-2010, Spark could not reach

convergence in a reasonable amount of time (i.e., 10 hours)
for all con gurations. We had to terminate Spark at the end
of the 10th iteration and thus the performance we report is
w.r.t. the rst 10 iterations. All the other iterative applications
ran to complete convergence. We have experimented with
three serializers: the Java serializer, Kryo, and Skyway.

Spark Performance Figure 8(a) reports the running time
comparisons among three serializers over the four input
graphs. Since di"erent programs have very di"erent perfor-
mance numbers, we plot them separately on di"erent scales.
For each dataset, WordCount and ConnectedComponents
 nished much more quickly than PageRank and Triangle-
Counting. This is primarily due to the nature of the applica-
tion – WordCount has one single iteration and one single
round of shu#ing; it is much easier for ConnectedCompo-
nents (i.e., a label propagation application, which nishes
in 3-5 iterations) to reach convergence than the other two
applications that often need many more iterations.
It is the same reason that explains why Skyway performs

better for PageRank and TriangleCounting – since they per-
form many rounds of data shu#ing, a large portion of their
execution time is taken by S/D and thus the savings in data
transfer achieved by Skyway are much more signi cant for
these two applications than the other two.
A detailed summary of each run-time component is pro-

vided in Table 2. Network time is included in Read. On
average, Skyway makes Spark run 36% and 16% faster than
the Java serializer and Kryo. Compared to the Java serializer,
Kryo achieves most of its savings from avoiding reading/writ-
ing type strings since Kryo relies on developers to register
classes. As a result, the I/O in network and local reads has
been signi cantly reduced. Skyway, on the contrary, ben-
e ts most from the reduced deserialization cost. Since the
transferred objects can be immediately used, the process of
recreating millions of objects and calling their constructors

T
im

e
(s

ec
)

Serializers

T
im

e
(s

ec
)

Serializers

T
im

e
(s

ec
)

Serializers

T
im

e
(s

ec
)

Serializers

T
im

e
(s

ec
)

Serializers

(a)

(b)

Read I/O

Write I/O

Deserialization

Serialization

Computation

UK-TC

0

15000

30000

45000
UK-PR

0

5000

10000

15000
UK-CC

0

2000

4000

6000
UK-WC

0

300

600

900

1200

LJ-TC

0

1000

2000

3000

LJ-PR

0

2000

4000

6000
LJ-CC

0

300

600

900
LJ-WC

0

50

100

150

200
OR-WC

0

50

100

150

200

250
OR-CC

0

500

1000

1500
OR-PR

0

1000

2000

3000
OR-TC

0

4000

8000

12000

16000

TW-WC

0

1500

3000

4500
TW-PR

0

5000

10000

15000

20000

25000
TW-TC

0

15000

30000

45000

60000

QA

0

15000

30000

45000

60000
QB

0

2500

5000

7500

10000
QC

0

1500

3000

4500

6000

7500
QD

0

2500

5000

7500

10000
QE

0

10000

20000

30000

TW-CC

0

5000

10000

15000

Figure 8. (a) Spark with Java serializer, Kryo, and Skyway; (b) Flink with Skyway and Flink’s built-in serializer.

is completely eliminated. Furthermore, it is worth noting,
again, that Kryo achieves its bene�t via heavyweight manual
development – there is a package of more than 20 classes
(several thousands of lines of code) in Spark developed to
use Kryo, while Skyway completely eliminates this manual
burden and simultaneously achieves even higher gains.
The number of bytes transferred under Skyway is about

the same as the Java serializer, but 77%more than Kryo due to
the transferring of the entirety of each object. The increased
data size is also re�ected in the increased write I/O. Skyway’s
read I/O time is shorter than that of the Java serializer. This
is primarily due to the elimination of object creation – we
only need one single scan of each bu�er instead of reading in
individual bytes to create objects as done in Kryo. Skyway’s
read I/O is longer than that of Kryo because Kryo transfers
much less bytes.
To understand what constitutes the extra bytes produced

by Skyway, we analyzed these bytes for our Spark appli-
cations. Our results show that, on average, object headers
take 51%, object paddings take 34%, and the remaining 15%
are taken by pointers. Since headers and paddings dominate
these extra bytes, future work could focus on compressing
headers and paddings during sending.

Memory Overhead To understand the overhead of the ex-
tra word �eld baddr in each object header, we ran the Spark
programs with the unmodi�ed HotSpot and compared peak

heap consumption with that of Skyway (by periodically run-
ning pmap). We found that the di�erence (i.e.,, the overhead)
is relatively small. Across our four programs, this overhead
varies from 2.1% to 21.8%, with an average of 15.4%.

5.3 Improving Flink with Skyway

We evaluated Skyway with the latest version of Flink (1.3.2,
released August 2017) executing under Hadoop version 2.6.5.
Flink has both streaming and batch processing models. Here
we focus on the batch-processing model, and particularly,
query answering applications.
Flink reads input data into a set of tuples (e.g., rows in

relational database); the type of each �eld in a tuple must be
known at compile time. Flink can thus select a built-in serial-
izer for each �eld to use when creating tuples from the input.
Flink falls back to the Kryo serializer when encountering
a type with neither a Flink-customized nor a user-de�ned
serializer available. Since the read/write interface is clearly
de�ned, we could easily integrate Skyway into Flink.
We used the TPC-H [37] data generator to generate a

100GB dataset as our input. Next, we transformed 5 repre-
sentative SQL queries generated by TPC-H into Flink ap-
plications. The description of these queries can be found in
Table 3. They were selected due to the diverse operations
they perform and database tables they access.

Description

QA Report pricing details for all items shipped within the last 120 days.

QB List the minimum cost supplier for each region for each item in the database.

QC Retrieve the shipping priority and potential revenue of all pending orders.

QD Count the number of late orders in each quarter of a given year.

QE Report all items returned by customers sorted by the lost revenue.

Table 3. Descriptions of the queries used in Flink.

Overall Ser Write Des Read Size

0.71 ∼ 0.88 0.56 ∼ 1.06 0.51 ∼ 1.76 0.58 ∼ 0.82 0.49 ∼ 1.13 1.23 ∼ 2.03
(0.81) (0.77) (0.96) (0.75) (0.61) (1.68)

Table 4. Performance improvement summary of Skyway on
Flink: normalized to Flink’s built-in serializer.

Figure 8(b) shows Flink’s performance improvement using
Skyway. Performance summary is also shown in Table 4.
In Flink, the amount of time in deserialization (8.7%) is

much less than that in serialization (23.5% on average). This
is because Flink does not deserialize all elds of a row upon
receiving it – only those involved in the transformation are
deserialized. Despite this lazy mechanism, Skyway could im-
prove Flink’s performance by, an overall of 19%, compared to
Flink’s built-in serializer. The total number of bytes written
by Skyway is also higher than the baseline – on average, Sky-
way emits 68% more bytes. It is worth noting that Skyway
is compared with Flink’s highly optimized built-in serial-
izer; it is statically chosen and optimized speci cally for the
data types involved in the queries, and has been shown to
outperform generic serializers such as Kryo.

6 Related Work
Object Sharing in the OS The idea of sharing memory
segments across processes has been studied in the OS de-
sign [10, 15, 19, 24, 33]. An object can exist in di!erent ad-
dress spaces, allowing the system to share memory across si-
multaneously executing processes. Mach [33] introduces the
concept of a memory object mappable by various processes.
The idea was later adopted in the Opal [10] and Nemesis [19]
operating systems to describe memory segments character-
ized by xed virtual o!sets. Lindstrom [24] expands these

notions to shareable containers that contain code segments

and private memory, leveraging a capability model to enforce

protection. Although most contemporary OSes allow one

process to be associated with a single virtual address space

(SVAS), there exist systems that support multiple virtual

address space (MVAS) abstractions.

The idea of multiple address spaces has mainly been ap-

plied to achieve protection in a shared environment [10, 15,

35]. More recently, to support the vast physical memory

whose capacity may soon exceed the virtual address space

size supported by today’s CPUs, SpaceJMP [15] provides a

new operating system design that promotes virtual address

spaces to rst-class citizens, which enables process threads

to attach to, detach from, and switch between multiple vir-

tual address spaces. Although this line of work is not directly

related to Skyway, they share a similar goal of achieving

memory e"ciency when objects are needed by multiple pro-

cesses. XMem [39] is a JVM-based technique that shares heap

space across JVM instances. None of these techniques target

object transfer in distributed systems.

Memory Management in Big Data Systems A variety of

data computation models and processing systems have been

developed in the past decade [1, 7, 9, 12, 13, 21, 30, 31, 36, 41–

43, 45]. MapReduce [14] has inspired much research on dis-

tributed data-parallel computation, including Hyracks [20],

Hadoop [1], Spark [45], and Dryad [21]. It has been ex-

tended [41] with Merge to support joins and adapted [12]

to support pipelining. Yu et al. propose a programming

model [42] for distributed aggregation for data-parallel sys-

tems. A number of high-level declarative languages for

data-parallel computation have been proposed, including

Sawzall [31], Pig Latin [30], SCOPE [9], Hive [36], and

DryadLINQ [43]. These frameworks are all developed in

managed languages and perform their computations on top

of the managed runtime. Hence, data shu#ing in these sys-

tems can bene t immediately from Skyway, as demonstrated

in our evaluation (§5).

Recently, there has been much interest in optimizing mem-

ory management in language runtimes for e"cient data pro-

cessing [8, 16, 17, 25, 26, 28, 29]. These works are largely

orthogonal to Skyway, although Skyway also ts in the cate-

gory of language runtime optimizations. ITask [16] provides

a library-based programmingmodel for developing interrupt-

ible tasks in data-parallel systems. ITask solves the memory

management problem using an orthogonal approach that

interrupts tasks and dumps live data to disk. In addition, it

is designed speci cally for data-parallel programs and does

not work for general (managed) systems.

7 Conclusion

This paper presents Skyway, the rst JVM-based system

that provides e"cient data transfer among managed heaps.

Our evaluation shows that Skyway outperforms all existing

S/D libraries and improves widely-deployed systems such as

Spark and Flink.

Acknowledgments

We thank the anonymous reviewers for their valuable and

thorough comments. We are also grateful to Kathryn McKin-

ley who pointed us to important related works. This ma-

terial is based upon work supported by the National Sci-

ence Foundation under grants CCF-1319786, CNS-1321179,

CCF-1409829, IIS-1546543, CNS-1514256, CNS-1613023, CNS-

1703598, and by the O"ce of Naval Research under grants

N00014-14-1-0549 and N00014-16-1-2913.

References
[1] Apache 2017. Hadoop: Open-source implementation of MapReduce.

h�p://hadoop.apache.org. (2017).

[2] Apache Flink 2017. Apache Flink. h�p://flink.apache.org/. (2017).

[3] Apache Thrift 2017. Apache Thrift. h�p://thri .apache.org/. (2017).

[4] Lars Backstrom, Dan Huttenlocher, Jon Kleinberg, and Xiangyang

Lan. 2006. Group Formation in Large Social Networks: Membership,

Growth, and Evolution. In KDD. 44–54.

[5] Lars Backstrom, Dan Huttenlocher, Jon Kleinberg, and Xiangyang

Lan. 2006. Group Formation in Large Social Networks: Membership,

Growth, and Evolution. In KDD. 44–54.

[6] Paolo Boldi and Sebastiano Vigna. 2004. The WebGraph Framework I:

Compression Techniques. InWWW. 595–601.

[7] Vinayak R. Borkar, Michael J. Carey, Raman Grover, Nicola Onose, and

Rares Vernica. 2011. Hyracks: A exible and extensible foundation for

data-intensive computing. In ICDE. 1151–1162.

[8] Yingyi Bu, Vinayak Borkar, Guoqing Xu, and Michael J. Carey. 2013.

A Bloat-Aware Design for Big Data Applications. In ISMM. 119–130.

[9] Ronnie Chaiken, Bob Jenkins, Per-Ake Larson, Bill Ramsey, Darren

Shakib, Simon Weaver, and Jingren Zhou. 2008. SCOPE: easy and

e!cient parallel processing of massive data sets. Proc. VLDB Endow. 1,
2 (2008), 1265–1276.

[10] Je" Chase, Miche Baker-Harvey, Hank Levy, and Ed Lazowska. 1992.
Opal: A Single Address Space System for 64-bit Architectures. SIGOPS
Oper. Syst. Rev. 26, 2 (1992), 9.

[11] Colfer. 2017. The Colfer Serializer.
https://go.libhunt.com/project/colfer. (2017).

[12] Tyson Condie, Neil Conway, Peter Alvaro, Joseph M. Hellerstein,
Khaled Elmeleegy, and Russell Sears. 2010. MapReduce online. In
NSDI. 21–21.

[13] Je"rey Dean and Sanjay Ghemawat. 2004. MapReduce: Simpli#ed
Data Processing on Large Clusters. In OSDI. 137–150.

[14] Je"rey Dean and Sanjay Ghemawat. 2008. MapReduce: Simpli#ed data
processing on large clusters. Commun. ACM 51, 1 (2008), 107–113.

[15] Izzat El Hajj, Alexander Merritt, Gerd Zellweger, Dejan Milojicic, Reto
Achermann, Paolo Faraboschi, Wen-mei Hwu, Timothy Roscoe, and
Karsten Schwan. 2016. SpaceJMP: Programming with Multiple Virtual
Address Spaces. In ASPLOS. 353–368.

[16] Lu Fang, Khanh Nguyen, Guoqing Xu, Brian Demsky, and Shan Lu.
2015. Interruptible Tasks: Treating Memory Pressure As Interrupts
for Highly Scalable Data-Parallel Programs. In SOSP. 394–409.

[17] Ionel Gog, Jana Giceva, Malte Schwarzkopf, Kapil Vaswani, Dimitrios
Vytiniotis, Ganesan Ramalingam, Manuel Costa, Derek G. Murray,
Steven Hand, and Michael Isard. 2015. Broom: Sweeping Out Garbage
Collection from Big Data Systems. In HotOS.

[18] Google. 2017. Orkut social network.
http://snap.stanford.edu/data/com-Orkut.html. (2017).

[19] Steven M. Hand. 1999. Self-paging in the Nemesis Operating System.
In OSDI. 73–86.

[20] UC Irvine. 2014. Hyracks: A data parallel platform. h�p://code.google.
com/p/hyracks/. (2014).

[21] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis Fet-
terly. 2007. Dryad: distributed data-parallel programs from sequential
building blocks. In EuroSys. 59–72.

[22] Kryo 2017. The Kryo serializer. h�ps://github.com/EsotericSo ware/
kryo. (2017).

[23] Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon. 2010.
What is Twitter, a Social Network or a News Media?. InWWW. 591–
600.

[24] A. Lindstrom, J. Rosenberg, and A. Dearle. 1995. The Grand Uni#ed
Theory of Address Spaces. In HotOS. 66–71.

[25] Martin Maas, Tim Harris, Krste Asanović, and John Kubiatowicz. 2015.
Trash Day: Coordinating Garbage Collection in Distributed Systems.
In HotOS.

[26] Martin Maas, Tim Harris, Krste Asanović, and John Kubiatowicz. 2016.
Taurus: A Holistic Language Runtime System for Coordinating Dis-
tributed Managed-Language Applications. In ASPLOS. 457–471.

[27] Jacob Nelson, Brandon Holt, Brandon Myers, Preston Briggs, Luis
Ceze, Simon Kahan, and Mark Oskin. 2015. Latency-tolerant Software
Distributed Shared Memory. In USENIX ATC. 291–305.

[28] KhanhNguyen, Lu Fang, Guoqing Xu, BrianDemsky, Shan Lu, Sanazsa-
dat Alamian, and Onur Mutlu. 2016. Yak: A High-Performance Big-
Data-Friendly Garbage Collector. In OSDI. 349–365.

[29] KhanhNguyen, KaiWang, Yingyi Bu, Lu Fang, Jianfei Hu, and Guoqing
Xu. 2015. Facade: A compiler and runtime for (almost) object-bounded
big data applications. In ASPLOS. 675–690.

[30] Christopher Olston, Benjamin Reed, Utkarsh Srivastava, Ravi Kumar,
and Andrew Tomkins. 2008. Pig Latin: a not-so-foreign language for
data processing. In SIGMOD. 1099–1110.

[31] Rob Pike, Sean Dorward, Robert Griesemer, and Sean Quinlan. 2005.
Interpreting the data: Parallel analysis with Sawzall. Sci. Program. 13,
4 (2005), 277–298.

[32] Protocol Bu"ers 2017. Protocol Bu"ers. h�ps://developers.google.
com/protocol-bu!ers/docs/javatutorial. (2017).

[33] Richard Rashid, Avadis Tevanian, Michael Young, David Golub, Robert
Baron, David Black, William Bolosky, and Jonathan Chew. 1987.
Machine-independent Virtual Memory Management for Paged Unipro-
cessor and Multiprocessor Architectures. In ASPLOS. 31–39.

[34] Eishay Smith. 2017. The Java Serialization Benchmark Set.
https://github.com/eishay/jvm-serializers. (2017).

[35] Masahiko Takahashi, Kenji Kono, and Takashi Masuda. 1999. E!cient
Kernel Support of Fine-Grained Protection Domains for Mobile Code.
In ICDCS. 64–73.

[36] Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad
Chakka, Suresh Anthony, Hao Liu, Pete Wycko", and Raghotham
Murthy. 2009. Hive: a warehousing solution over a map-reduce frame-
work. Proc. VLDB Endow. 2, 2 (2009), 1626–1629.

[37] TPC. 2014. The standard data warehousing benchmark.
http://www.tpc.org/tpch. (2014).

[38] Duncan J. Watts and Steven H. Strogatz. 1998. Collective dynamics of
‘small-world’ networks. Nature 393, 6684 (1998), 440–442.

[39] Michal Wegiel and Chandra Krintz. 2008. XMem: Type-safe, Transpar-
ent, Shared Memory for Cross-runtime Communication and Coordi-
nation. In PLDI. 327–338.

[40] Java World. 2017. The Java serialization algorithm
revealed. h�p://www.javaworld.com/article/2072752/

the-java-serialization-algorithm-revealed.html. (2017).
[41] Hung-chih Yang, Ali Dasdan, Ruey-Lung Hsiao, and D. Stott Parker.

2007. Map-reduce-merge: simpli#ed relational data processing on
large clusters. In SIGMOD. 1029–1040.

[42] Yuan Yu, Pradeep Kumar Gunda, and Michael Isard. 2009. Distributed
Aggregation for Data-parallel Computing: Interfaces and Implementa-
tions. In SOSP. 247–260.

[43] Yuan Yu, Michael Isard, Dennis Fetterly, Mihai Budiu, Úlfar Erlingsson,
Pradeep Kumar Gunda, and Jon Currey. 2008. DryadLINQ: a system for
general-purpose distributed data-parallel computing using a high-level
language. In OSDI. 1–14.

[44] Matei Zaharia. 2016. What is changing in Big Data?
h�ps://www.microso .com/en-us/research/wp-content/uploads/

2016/07/Zaharia_Matei_Big_Data.pdf. (2016). MSR Faculty Summit.
[45] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott

Shenker, and Ion Stoica. 2010. Spark: Cluster computing with working
sets. In HotCloud.

