
Scalability issues remain common in Big Data systems

Interruptable Tasks: Treating Memory Pressure As
Interrupts for Highly Scalable Data-Parallel Programs

Lu Fang
Advisor: Guoqing(Harry) Xu

University of California, Irvine

Background and Motivation

The ITask Programming Model

Implementation and Evaluation

Conclusions

The key insights of ITask
 Main idea: Treat memory pressure as interrupts

− A data parallel task can be interrupted upon memory pressure
− An interrupted task can be resumed when memory pressure goes

away
 No need of

− Additional hardware resource
− Manual parameter tuning

The ITask Runtime System

The ITask abstract class

The Execution of An ITask

// The DataPartition abstract class in the library
abstract class DataPartition {

/* The tag for grouping */
int tag;
/* The cursor points to the first unprocessed tuple */
int cursor;
/* Return whether there exists unprocessed tuple */
abstract boolean hasNext();
/* Serialize the DataPartition */
abstract void serialize();
/* Deserialize the DataPartition */
abstract DataPartition deserialize();

}

Instantiating ITasks in Existing Frameworks
On Hyracks

class MapOperator extends ITask implements HyracksOperator{
MapPartition output;
@Override
void initialize() {
/* Create an output partition */
output = new MapPartition();

}
@Override
void interrupt() {
/* The output can be sent to reshuffling at any time */
Hyracks.shuffle(output.getData());
/* Release the processed parts of the data partition */
PartitionManager.release(output);

}
@Override
void cleanup() {
Hyracks.shuffle(output.getData());

}
@Override
void process(Tuple t) {
addWordInMap(output, t.getElement(0));

}
/* A function defined in HyracksOperator */
void nextFrame(ByteBuffer frame) {
/* Wrap the buffer into a partition object */
BufferPartition b = new BufferPartition(frame);
/* Set input and output */
MapOperator.setInputType(BufferPartition.class);
MapOperator.setOutputType(MapPartition.class);
/* Push the partition to the queue and run ITask */
ITaskScheduler.pushToQueue(b);
ITaskScheduler.start();

}
}

 Send “Reduce” signal
– When memory pressure is detected

 Send “Grow” signal
– When the worker node has enough resource to start another thread

Monitor

Partition Manager
 Serialize data partitions to disk

– When memory pressure is detected (Receiving “Reduce” signal)
 Deserialize the data partitions from disk

– When the data partitions are about to be processed

Scheduler
 Reduce the number of task instances

– When memory pressure is detected and no more candidate
partitions can be serialized to disk

 Create a new thread to run a task
– When a “Grow” signal is received from the monitor

 Hyracks 0.2.14 (newest version) [https://code.google.com/p/hyracks/]
ITask library implementation

Evaluation
 Datasets

– Yahoo Web Map, for WC, HS and II
– TPC-H data, for HJ and GR

 Performance improvements
– The execution time is reduced 39.54%. (1.65x faster)
– The peak memory consumption is reduced 9.26%.
– The ITask programs can scale up to 24.00x larger datasets.

The ITask input and output

Novelties of ITask
 ITask works proactively in response to memory pressure

− Take actions when a bellwether of memory pressure is seen
− Take the system back to the memory usage “safe zone” even

before much time is spent is spent on garbage collection (GC)
− Improve both scalability and performance

 ITask uses a staged approach to lower its memory consumption
− 5 stages: releasing (1) local variables, (2) the processed portion of

the input, (3) partial output, (4) intermediate results, and (5) in-
memory data, e.g., the rest of unprocessed data in memory

 ITask is easy to implement
− ITask programming model: users (1) reconstruct code for existing

tasks, (2) implement the abstract methods defined in ITask class
− ITask runtime system: sits on top of existing frameworks, provides

complementary optimizations and additional safety guarantee.

The System Architecture

// The ITask abstract class in the library
abstract class ITask {

abstract void initialize(); /* Initialization logic */
abstract void interrupt(); /* Interrupt logic */
abstract void cleanup(); /* Finalization logic */
abstract void process(Tuple t); /* Process a tuple */
/* Scalable loop */
boolean scaleLoop(DataPartition dp) {
while (dp.hasNext()) {

if (Monitor.hasMemoryPressure()
&& ITaskScheduler.terminate(this)) {

/* Invoke the user-defined interrupt logic */
interrupt();
/* Push the partially processed input to the queue*/
ITaskScheduler.pushToQueue(dp);
return false;

}
process(dp.next());

}
return true;

}
}

ITask WordCount Application on Hyracks

 Out of memory!!! Significant slow down!! Non-scalable!
 State-of-the-art frameworks

− Hadoop [http://hadoop.apache.org]
− Spark [Zaharia-NSDI’12]
− Hive [Thusoo-ICDE’10]
− Mahout [http://mahout.apache.org]
− Pig [Olston-SIGMOD’08]
− Hyracks [Borkar-ICDE’11]

 A common problem: memory pressure on single-node
− An extensive study including 73 memory issues reported on

StackOverflow [http://stackoverflow.com/]
− Even using existing state-of-the-art automated tuning tools, e.g.,

YARN [Vavilapalli-SoCC’13], Mesos [Hindman-NSDI’11]
 Manual tuning is difficult!!!

− Too many parameters, e.g., Hadoop has about 190 parameters
− Requires highly-specialized experiences
− Time consuming
− Many problems cannot be solved by just tuning parameters

 An existing task needs to extend the ITask abstract class to
become an interruptable task.

 Four abstract functions are defined in ITask abstract class
– initialize, interrupt, cleanup, process

 Both input and output of an ITask are objects of type DataPartition
– Developers only need to wrap an existing partition into a

DataPartition Object
– DataPartition: data tuples, a group tag, and a progress cursor

 A task in Hyracks is an implementation of HyracksOperator
– HyracksOperator is an interface
– An interruptable HyracksOperator needs to extend ITask

No data means the applications crash because of OutOfMemoryError

Dataset being
processed

Processed
Dataset

Done
processing Processing

memory
pressure

memory
freedom

memory
pressure

memory
freedom

OD12OD11 OD21

GC Time

Computation Time

Peak Memory

GC Time

Computation Time

Peak Memory

10x 20x 30x 50x 100x 150x
0

2

4

6

8

10

12

0

80

160

240

320

400

Dataset

Peak M
em

ory (G
B

)

E
xe

cu
tio

n
T

im
e

(S
ec

on
ds

) Group By

10x 20x 30x 50x 100x 150x
0

2

4

6

8

10

12

0

40

80

120

160

200

240

Dataset

Peak M
em

ory (G
B

)

E
xe

cu
tio

n
T

im
e

(S
ec

on
ds

) Hash Join

3GB 10GB 14GB 27GB 44GB 72GB
0

2

4

6

8

10

12

0

400

800

1200

1600

2000

2400

Dataset

Peak M
em

ory (G
B

)

E
xe

cu
tio

n
T

im
e

(S
ec

on
ds

) Inverted Index

3GB 10GB 14GB 27GB 44GB 72GB
0

2

4

6

8

10

12

0

200

400

600

800

1000

Dataset

Peak M
em

ory (G
B

)

E
xe

cu
tio

n
T

im
e

(S
ec

on
ds

) Heap Sort

3GB 10GB 14GB 27GB 44GB 72GB
0

2

4

6

8

10

12

0

200

400

600

800

1000

Dataset

Peak M
em

ory (G
B

)

E
xe

cu
tio

n
T

im
e

(S
ec

on
ds

) Word Count

 ITask is the first attempt to help data-parallel tasks survive memory
pressure and successfully scale to much larger datasets.
 It also relieves the system from high GC costs resulting from frequent

useless and long GCs.
 ITask is a non-intrusive approach, and easy to use.

