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The key insights of ITask
 Main idea: Treat memory pressure as interrupts

− A data parallel task can be interrupted upon memory pressure
− An interrupted task can be resumed when memory pressure goes 

away
 No need of

− Additional hardware resource
− Manual parameter tuning

The ITask Runtime System

The ITask abstract class

The Execution of An ITask

// The DataPartition abstract class in the library
abstract class DataPartition {

/* The tag for grouping */
int tag;
/* The cursor points to the first unprocessed tuple */
int cursor;
/* Return whether there exists unprocessed tuple */
abstract boolean hasNext();
/* Serialize the DataPartition */
abstract void serialize();
/* Deserialize the DataPartition */
abstract DataPartition deserialize();

}

Instantiating ITasks in Existing Frameworks
On Hyracks

class MapOperator extends ITask implements HyracksOperator{
MapPartition output;
@Override
void initialize() {  
/* Create an output partition */
output = new MapPartition(); 

}
@Override
void interrupt() {
/* The output can be sent to reshuffling at any time */
Hyracks.shuffle(output.getData());
/* Release the processed parts of  the data partition */
PartitionManager.release(output);

}
@Override
void cleanup() {
Hyracks.shuffle(output.getData());

}
@Override
void process(Tuple t) {
addWordInMap(output, t.getElement(0));

}
/* A function defined in HyracksOperator */
void nextFrame(ByteBuffer frame) {
/* Wrap the buffer into a partition object */
BufferPartition b = new BufferPartition(frame);
/* Set input and output */
MapOperator.setInputType(BufferPartition.class);
MapOperator.setOutputType(MapPartition.class);
/* Push the partition to the queue and run ITask */
ITaskScheduler.pushToQueue(b);
ITaskScheduler.start();

}
}

 Send “Reduce” signal
– When memory pressure is detected

 Send “Grow” signal
– When the worker node has enough resource to start another thread

Monitor

Partition Manager
 Serialize data partitions to disk

– When memory pressure is detected (Receiving “Reduce” signal)
 Deserialize the data partitions from disk

– When the data partitions are about to be processed

Scheduler
 Reduce the number of task instances

– When memory pressure is detected and no more candidate 
partitions can be serialized to disk

 Create a new thread to run a task
– When a “Grow” signal is received from the monitor

 Hyracks 0.2.14 (newest version) [https://code.google.com/p/hyracks/]
ITask library implementation

Evaluation
 Datasets

– Yahoo Web Map, for WC, HS and II
– TPC-H data, for HJ and GR

 Performance improvements
– The execution time is reduced 39.54%. (1.65x faster)
– The peak memory consumption is reduced 9.26%. 
– The ITask programs can scale up to 24.00x larger datasets. 

The ITask input and output

Novelties of ITask
 ITask works proactively in response to memory pressure

− Take actions when a bellwether of memory pressure is seen
− Take the system back to the memory usage “safe zone” even 

before much time is spent is spent on garbage collection (GC)
− Improve both scalability and performance

 ITask uses a staged approach to lower its memory consumption
− 5 stages: releasing (1) local variables, (2) the processed portion of 

the input, (3) partial output, (4) intermediate results, and (5) in-
memory data, e.g., the rest of unprocessed data in memory

 ITask is easy to implement
− ITask programming model: users (1) reconstruct code for existing 

tasks, (2) implement the abstract methods defined in ITask class
− ITask runtime system: sits on top of existing frameworks, provides 

complementary optimizations and additional safety guarantee.

The System Architecture

// The ITask abstract class in the library
abstract class ITask {

abstract void initialize(); /* Initialization logic */
abstract void interrupt(); /* Interrupt logic */
abstract void cleanup();    /* Finalization logic */
abstract void process(Tuple t);  /* Process a tuple */
/* Scalable loop */
boolean scaleLoop(DataPartition dp) {
while (dp.hasNext()) {

if  (Monitor.hasMemoryPressure() 
&& ITaskScheduler.terminate(this)) {

/* Invoke the user-defined interrupt logic */
interrupt();
/* Push the partially processed input to the queue*/
ITaskScheduler.pushToQueue(dp);
return false;

}
process(dp.next());

}
return true;

}
}

ITask WordCount Application on Hyracks

 Out of memory!!!  Significant slow down!!  Non-scalable!
 State-of-the-art frameworks

− Hadoop [http://hadoop.apache.org]
− Spark [Zaharia-NSDI’12]
− Hive [Thusoo-ICDE’10]
− Mahout [http://mahout.apache.org]
− Pig [Olston-SIGMOD’08]
− Hyracks [Borkar-ICDE’11]

 A common problem: memory pressure on single-node
− An extensive study including 73 memory issues reported on 

StackOverflow [http://stackoverflow.com/]
− Even using existing state-of-the-art automated tuning tools, e.g., 

YARN [Vavilapalli-SoCC’13], Mesos [Hindman-NSDI’11]
 Manual tuning is difficult!!!

− Too many parameters, e.g., Hadoop has about 190 parameters
− Requires highly-specialized experiences
− Time consuming
− Many problems cannot be solved by just tuning parameters

 An existing task needs to extend the ITask abstract class to 
become an interruptable task.

 Four abstract functions are defined in ITask abstract class
– initialize, interrupt, cleanup, process

 Both input and output of an ITask are objects of type DataPartition
– Developers only need to wrap an existing partition into a 

DataPartition Object
– DataPartition: data tuples, a group tag, and a progress cursor

 A task in Hyracks is an implementation of HyracksOperator
– HyracksOperator is an interface
– An interruptable HyracksOperator needs to extend ITask

No data means the applications crash because of OutOfMemoryError
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 ITask is the first attempt to help data-parallel tasks survive memory 
pressure and successfully scale to much larger datasets.
 It also relieves the system from high GC costs resulting from frequent 

useless and long GCs.
 ITask is a non-intrusive approach, and easy to use.


