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Background and Motivation

Scalablility issues remain common in Big Data systems
¢ Out of memory!!! Non-scalable!

¢ State-of-the-art frameworks
- Hadoop [http://hadoop.apache.org]
- Spark [Zaharia-NSDI'12]
- Hive [Thusoo-ICDE"0]
- Mahout [http://mahout.apache.org]
- Pig [Olston-SIGMOD’08]
- Hyracks [Borkar-ICDE11]
¢ A common problem: memory pressure on single-node
- An extensive study including 73 memory issues reported on
StackOverflow [hitp://stackoverflow.com/]
- Even using existing state-of-the-art automated tuning tools, e.g.,
YARN [Vavilapalli-SoCC’13], Mesos [Hindman-NSDI"11]
¢ Manual tuning is difficult!!!
- Too many parameters, e.g., Hadoop has about 190 parameters
- Requires highly-specialized experiences
- Time consuming
- Many problems cannot be solved by just tuning parameters
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The key insights of [Task
¢ Main idea: Treat memory pressure as interrupts
- Adata parallel task can be interrupted upon memory pressure
- An interrupted task can be resumed when memory pressure goes
away
¢ No need of
- Additional hardware resource
- Manual parameter tuning

Novelties of ITask
¢ [Task works proactively in response to memory pressure

- Take actions when a bellwether of memory pressure is seen
- Take the system back to the memory usage “safe zone” even
before much time is spent is spent on garbage collection (GC)
- Improve both scalability and performance
¢ [Task uses a staged approach to lower its memory consumption
- 5 stages: releasing (1) local variables, (2) the processed portion of
the input, (3) partial output, (4) intermediate results, and (5) in-
memory data, e.g., the rest of unprocessed data in memory
¢ ITask Is easy to implement
- |Task programming model: users (1) reconstruct code for existing
tasks, (2) implement the abstract methods defined in ITask class
- ITask runtime system: sits on top of existing frameworks, provides
complementary optimizations and additional safety guarantee.
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The ITask Programming Model

The ITask abstract class
¢ An existing task needs to extend the ITask abstract class to

become an interruptable task.
¢ Four abstract functions are defined in ITask abstract class
— Initialize, interrupt, cleanup, process

// The ITask abstract class in the library
abstract class I'Task {
abstract void initialize(); /* Initialization logic */
abstract void interrupt(); /* Interrupt logic */
abstract void cleanup(); /* Finalization logic */
abstract void process(Tuple t); /* Process a tuple */
/* Scalable loop */
boolean scaleLoop(DataPartition dp) {
while (dp.hasNext()) {
if (Monitor.hasMemoryPressure()
&& I'TaskScheduler.terminate(this)) {
/* Invoke the user-defined interrupt logic */
interrupt();
/* Push the partially processed input to the queue*/
ITaskScheduler.pushToQueue(dp);
return false;

)
process(dp.next());

)

return true;

)

h

The ITask input and output
¢ Both input and output of an Task are objects of type DataPartition

— Developers only need to wrap an existing partition into a
DataPartition Object
— DataPartition: data tuples, a group tag, and a progress cursor

// The DataPartition abstract class in the library
abstract class DataPartition {
/* The tag for grouping */
int tag;
/* The cursor points to the first unprocessed tuple */
int cursor;
/* Return whether there exists unprocessed tuple */
abstract boolean hasNext();
/* Serialize the DataPartition */
abstract vold serialize();
/* Deserialize the DataPartition */

abstract DataPartition deserialize();

The Execution of An ITask
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Instantiating ITasks in Existing Frameworks

On Hyracks
¢+ Atask in Hyracks is an implementation of HyracksOperator

— HyracksOperator is an interface
— Aninterruptable HyracksOperator needs to extend ITask

class MapOperator extends I'Task implements HyracksOperator{

MapPartition output;

@Override

void initialize() {
/* Create an output partition */
output = new MapPartition();

]

@Override

void interrupt() {
/* The output can be sent to reshuffling at any time */
Hyracks.shuffle(output.getData());
/* Release the processed parts of the data partition */
PartitionManager.release(output);

)

@Override

void cleanup() {
Hyracks.shuffle(output.getData());
)

@Override

void process(Tuple t) {
addWordInMap(output, t.getElement(0));

)

/* A function defined in HyracksOperator */

void nextFrame(ByteBuffer frame) {
/* Wrap the buffer into a partition object */
BufferPartition b = new BufferPartition(frame);
/* Set input and output */
MapOperator.setInputType(BufferPartition.class);
MapOperator.setOutputType(MapPartition.class);
/* Push the partition to the queue and run ITask */
ITaskScheduler.pushToQueue(b);
ITaskScheduler.start();
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ITask WordCount Application on Hyracks

The ITask Runtime System

Monitor
¢ Send “Reduce” signal

— When memory pressure is detected
¢ Send “Grow” signal
— When the worker node has enough resource to start another thread

Partition Manager
¢ Serialize data partitions to disk

— When memory pressure is detected (Receiving “Reduce” signal)
¢ Deserialize the data partitions from disk

— When the data partitions are about to be processed

Scheduler
+¢» Reduce the number of task instances

— When memory pressure is detected and no more candidate
partitions can be serialized to disk
¢ Create a new thread to run a task
— When a “Grow” signal is received from the monitor

Implementation and Evaluation

ITask library implementation
¢ Hyracks 0.2.14 (newest version) [https://code.google.com/p/hyracks/]

Evaluation
s+ Datasets

— Yahoo Web Map, for WC, HS and 11
— TPC-H data, for HJ and GR
¢ Performance improvements
— The execution time is reduced 39.54%. (1.65x faster)
— The peak memory consumption is reduced 9.26%.
— The ITask programs can scale up to 24.00x larger datasets.
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Conclusions

¢ ITask is the first attempt to help data-parallel tasks survive memory
pressure and successfully scale to much larger datasets.

¢ It also relieves the system from high GC costs resulting from frequent
useless and long GCs.

» ITask is a non-intrusive approach, and easy to use.




