Interruptable Tasks: Treating Memory Pressure As

Interrupts for Highly Scalable Data-Parallel Programs

Lu Fang
Advisor: Guoging(Harry) Xu

University of California, Irvine

UCIRVINE

Background and Motivation

Scalablility issues remain common in Big Data systems
¢ Out of memory!!! Non-scalable!

¢ State-of-the-art frameworks
- Hadoop [http://hadoop.apache.org]
- Spark [Zaharia-NSDI'12]
- Hive [Thusoo-ICDE"0]
- Mahout [http://mahout.apache.org]
- Pig [Olston-SIGMOD’08]
- Hyracks [Borkar-ICDE11]
¢ A common problem: memory pressure on single-node
- An extensive study including 73 memory issues reported on
StackOverflow [hitp://stackoverflow.com/]
- Even using existing state-of-the-art automated tuning tools, e.g.,
YARN [Vavilapalli-SoCC’13], Mesos [Hindman-NSDI"11]
¢ Manual tuning is difficult!!!
- Too many parameters, e.g., Hadoop has about 190 parameters
- Requires highly-specialized experiences
- Time consuming
- Many problems cannot be solved by just tuning parameters

4

®

The key insights of [Task
¢ Main idea: Treat memory pressure as interrupts
- Adata parallel task can be interrupted upon memory pressure
- An interrupted task can be resumed when memory pressure goes
away
¢ No need of
- Additional hardware resource
- Manual parameter tuning

Novelties of ITask
¢ [Task works proactively in response to memory pressure

- Take actions when a bellwether of memory pressure is seen
- Take the system back to the memory usage “safe zone” even
before much time is spent is spent on garbage collection (GC)
- Improve both scalability and performance
¢ [Task uses a staged approach to lower its memory consumption
- 5 stages: releasing (1) local variables, (2) the processed portion of
the input, (3) partial output, (4) intermediate results, and (5) in-
memory data, e.g., the rest of unprocessed data in memory
¢ ITask Is easy to implement
- |Task programming model: users (1) reconstruct code for existing
tasks, (2) implement the abstract methods defined in ITask class
- ITask runtime system: sits on top of existing frameworks, provides
complementary optimizations and additional safety guarantee.

memory memory memory memory

n-the-fly partitioning
pressure freedom pressure freedom

due to interrupts

. | .
ID1 ID2 : | :
S g —
< — S —>I 5 —>
ODll O[}lz O 21 ™
ene) \Tana) | () 1548 -
| : :
v J7 v

(a) The data flow of an ITask execution (b) The control flow of an ITask execution

Dataset being Processed /\/\, Done
processed | Dataset processing

—>> Processing

The System Architecture

e ITask Runtime System (IRS

SEIEE
3
SHi:

_ Distributed Runtime .

N

j ~—"

nJ

assign
jobs

Framework’s
Job Scheduler

dnusyul [0

(=)

O Node [l Running ITask Instance [l Inactive ITask Instance
‘ Serialized Data Partition Q Deserialized Data Partition

The ITask Programming Model

The ITask abstract class
¢ An existing task needs to extend the ITask abstract class to

become an interruptable task.
¢ Four abstract functions are defined in ITask abstract class
— Initialize, interrupt, cleanup, process

// The ITask abstract class in the library
abstract class I'Task {
abstract void initialize(); /* Initialization logic */
abstract void interrupt(); /* Interrupt logic */
abstract void cleanup(); /* Finalization logic */
abstract void process(Tuple t); /* Process a tuple */
/* Scalable loop */
boolean scaleLoop(DataPartition dp) {
while (dp.hasNext()) {
if (Monitor.hasMemoryPressure()
&& I'TaskScheduler.terminate(this)) {
/* Invoke the user-defined interrupt logic */
interrupt();
/* Push the partially processed input to the queue*/
ITaskScheduler.pushToQueue(dp);
return false;

)
process(dp.next());

)

return true;

)

h

The ITask input and output
¢ Both input and output of an Task are objects of type DataPartition

— Developers only need to wrap an existing partition into a
DataPartition Object
— DataPartition: data tuples, a group tag, and a progress cursor

// The DataPartition abstract class in the library
abstract class DataPartition {
/* The tag for grouping */
int tag;
/* The cursor points to the first unprocessed tuple */
int cursor;
/* Return whether there exists unprocessed tuple */
abstract boolean hasNext();
/* Serialize the DataPartition */
abstract vold serialize();
/* Deserialize the DataPartition */

abstract DataPartition deserialize();

The Execution of An ITask

-

Tuple scaleLoop

Unprocessed Input
DataPartition

initialize cleanup >
Output

DataPartition

process

Memory|Pressure

Paritial Output
DataPartition

interrupt

Partially Processed
Input DataPartition

Instantiating ITasks in Existing Frameworks

On Hyracks
¢+ Atask in Hyracks is an implementation of HyracksOperator

— HyracksOperator is an interface
— Aninterruptable HyracksOperator needs to extend ITask

class MapOperator extends I'Task implements HyracksOperator{

MapPartition output;

@Override

void initialize() {
/* Create an output partition */
output = new MapPartition();

]

@Override

void interrupt() {
/* The output can be sent to reshuffling at any time */
Hyracks.shuffle(output.getData());
/* Release the processed parts of the data partition */
PartitionManager.release(output);

)

@Override

void cleanup() {
Hyracks.shuffle(output.getData());
)

@Override

void process(Tuple t) {
addWordInMap(output, t.getElement(0));

)

/* A function defined in HyracksOperator */

void nextFrame(ByteBuffer frame) {
/* Wrap the buffer into a partition object */
BufferPartition b = new BufferPartition(frame);
/* Set input and output */
MapOperator.setInputType(BufferPartition.class);
MapOperator.setOutputType(MapPartition.class);
/* Push the partition to the queue and run ITask */
ITaskScheduler.pushToQueue(b);
ITaskScheduler.start();

Read input from HDFS
Word Count

Mapper Operator

Write output to HDFS

Word Count
Reducer Operator

Data Shuffling

ITask WordCount Application on Hyracks

The ITask Runtime System

Monitor
¢ Send “Reduce” signal

— When memory pressure is detected
¢ Send “Grow” signal
— When the worker node has enough resource to start another thread

Partition Manager
¢ Serialize data partitions to disk

— When memory pressure is detected (Receiving “Reduce” signal)
¢ Deserialize the data partitions from disk

— When the data partitions are about to be processed

Scheduler
+¢» Reduce the number of task instances

— When memory pressure is detected and no more candidate
partitions can be serialized to disk
¢ Create a new thread to run a task
— When a “Grow” signal is received from the monitor

Implementation and Evaluation

ITask library implementation
¢ Hyracks 0.2.14 (newest version) [https://code.google.com/p/hyracks/]

Evaluation
s+ Datasets

— Yahoo Web Map, for WC, HS and 11
— TPC-H data, for HJ and GR
¢ Performance improvements
— The execution time is reduced 39.54%. (1.65x faster)
— The peak memory consumption is reduced 9.26%.
— The ITask programs can scale up to 24.00x larger datasets.

1000 121000 12
% Word Couy; « Heap Sort

S 800 | 102 5 g00 103
D L ©
@z // - 8 A @ / - 8 A~
o 600 < 3 600 <
£ 6 3 E -6 3
[|+| o = o
— 400 =y 400 52
(@ —~ O 4 —~
= / O = /// 0)
3 200 @ 3 200 v,
X x v

L LL =

O 1 1 I 1 O O 1 1 I O
Dataset 3GB 10GB 14GB 27GB 44GB 72GB Dataset 3GB 10GB 14GB 27GB 44GB 72GB
2400 12240 - 12
% Inverted Index © Hash Join
€ 2000 10T <200 10 ©
2 S 9 3
1600 -8 X v 160 8 X
o " 5 o 5
£ 1200 -6 3 E120 6 3
= S E / S
S 800 — (] 43 5 &0 o a2
g 400] I -2 ¥ g 40 - L, B
L i I L
0 == , . , .) 0 - -0

Dataset 3GB 10GB 14GB 27GB 44GB 72GB Dataset 10x 20x 30x 50x 100x 150x

400 12

C Group By E3GC Time

S 320 10D

g ‘ o % ITask msmComputation Time

@ 240 = Peak Memory

£ -6 3

= 160 v S .

c / 4= EEGC Time

S 3

o 80 . L, Java ®EmEComputation Time

(&) ~—

S / 2 P

Wy | 0 -8-Peak Memory

Dataset 10x 20x 30x 50x 100x| 150x
No data means the applications crash because of OutOfMemoryError

Conclusions

¢ ITask is the first attempt to help data-parallel tasks survive memory
pressure and successfully scale to much larger datasets.

¢ It also relieves the system from high GC costs resulting from frequent
useless and long GCs.

» ITask is a non-intrusive approach, and easy to use.

