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Abstract

Big Data systems are typically implemented in object-
oriented languages such as Java and Scala due to the quick
development cycle they provide. These systems are executed
on top of a managed runtime such as the Java Virtual Ma-
chine (JVM), which requires each data item to be represented
as an object before it can be processed. This representation
is the direct cause of many kinds of severe ineiciencies.

We developed Gerenuk, a compiler and runtime that aims
to enable a JVM-based data-parallel system to achieve near-
native eiciency by transforming a set of statements in the
system for direct execution over inlined native bytes. The key
insight leading to Gerenuk’s success is two-fold: (1) analytics
workloads often use immutable and conined data types. If
we speculatively optimize the system and user code with this
assumption, the transformation can be made tractable. (2)
The low of data starts at a deserialization point where objects
are created from a sequence of native bytes and ends at a
serialization point where they are turned back into a byte se-
quence to be sent to the disk or network. This low naturally
deines a speculative execution region (SER) to be transformed.
Gerenuk compiles a SER speculatively into a version that
can operate directly over native bytes that come from the
disk or network. The Gerenuk runtime aborts the SER exe-
cution upon violations of the immutability and coninement
assumption and switches to the slow path by deserializing
the bytes and re-executing the original SER. Our evaluation
on Spark and Hadoop demonstrates promising results.

CCS Concepts · Information systems→ Data manage-
ment systems; · Software and its engineering→ Com-
pilers.
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1 Introduction

Modern Big Data systems, such as Hadoop [12], Spark [73],
Flink [14], or Hive [13], were all implemented in object-
oriented languages such as Scala and Java due to the high
productivity enabled by these languages. However, managed
runtime systems incur a heavy runtime cost [19, 30, 56, 58],
leading to reduced eiciency and processing capabilities.
A major source of this cost comes from the fundamental
abstraction of object-orientationÐeverything is an object.

For data-intensive systems, each computational iteration
needs to process billions of data items, which are represented
as billions of objects. Previous work shows that this object-
based representation can inlate the memory usage by almost
four times [19] due to the extra meta-information required
by the managed runtime such as object headers, padding,
pointers, etc. Such a huge memory inlation incurs exceed-
ingly high garbage collection (GC) overhead, up to 70% of
the total execution time [57], and results in either increased
computation cost to satisfy the memory need or increased
memory-disk round trips.

Big Data systems often need to shule billions of objects,
and representing each data item as an object dictates that
each shule needs to serialize many objects into native bytes,
transfer them over the network, and deserialize the bytes
back into objects before they can be processed at a remote
machine. Evidence shows that serialization and deserializa-
tion can take up to 30% of the execution [56]. This cost will
only increase as systems become more heterogeneous by in-
corporating heterogeneous software/hardware components,
such as UDFs in diferent languages or accelerators. All rep-
resent data in their unique formats, dictating even more
frequent serialization and deserialization.
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State of the Art. The cost of representing data as objects
has been a known problem, with much recent efort attempt-
ing to reduce this cost. Some work tackles one aspect of the
problem. Skyway [56] lowers the (de)serialization cost by
directly transferring objects through the network, and hence,
cannot help with memory inlation and GC problems (it ac-
tually brings some data inlation into network packages).
Yak [57] lowers the GC cost by adapting the GC algorithm
to it lifetime patterns in data-intensive systems, and does
not solve memory inlation or (de)serialization problems.
Broom [34] provides APIs for Naiad [54] developers to man-
ually allocate/deallocate data objects in regions. It works
only for Naiad and does not provide automated support.

Some work provides a partial solution by focusing only on
certain data types. For example, Tungsten, a Spark project, en-
ables abstractions such as DataFrame and DataSet to be stored
in native memory on which hashing and sorting can be di-
rectly performed. However, such abstractions work only for
simple primitive or sequence types, but not for user-deined
types that involve structures and pointers, such as various
sparse/dense vectors used in machine learning algorithms.

One approach that may fundamentally address this prob-
lem is to automatically transform the (system and user) code
so that data items are represented as native bytes and data
processing is performed in native memory. The feasibility of
this approach depends on how data are processed.
The good news is that prior work [19] observed that the

majority, more than 95%, of runtime objects are created and
used by a rather small and simple codebase that primarily
conducts data manipulation like map, reduce, and relational
operations, which are amenable to and can beneit greatly
from such a transformation. Only less than 5% of runtime
objects are created by a large and complex codebase for
cluster management, scheduling, communication, and others,
which are extremely diicult to, and fortunately need not to,
be transformed. The bad news, however, is that there does
not exist a clear separation between the former, referred to as
data path, and the latter, referred to as control pathÐthey are
often heavily mixed inside one class and even one method.
A recent technique Facade [58] attempts to provide such

a transformation as described above. However, since it aims
to transform one whole class at a time, and turns every ield
in a class into a native representation and every statement
in every method of the class into a native-byte operation,
using Facade requires a huge amount of code refactoring to
split many classes and methods to make sure that data and
control code modules do not interfere, making it extremely
diicult to use in practice (more details in ğ2).

Our Key Insight. To make transformation more efec-
tive, our irst insight is that we should perform ine-grained
transformation on individual statements rather than a
class/method as a wholeÐif we identify and transform only
the statements to which data objects can low, the analysis

and transformation efort is much more focused and the need
for manual refactoring is much less. Speciically, even if a
class contains both control-item and data-item ields, we do
not need to split the class; even if a method contains some
statements processing control items and some processing
data items, we can leave the former as is and only transform
the latter. Hence, no refactoring is needed at the class level to
achieve a clean separation between control and data paths.
Of course, ine-grained transformation does not solve all

the problems. Our goal is to represent all data objects by
inlining only their payloads in native bytes. This cannot be
done under certain circumstances. First, although extremely
rare, some data objects may escape to and get referenced by
classes in the control path, and hence cannot be turned into
a native representation. Second, although extremely rare
(again), some data items may be used on the data path in a
way that is not amenable to the use of a native representation.
For example, if ield f of object o is to be updated during
execution, o cannot be turned into native bytes, which would
inline the object referenced by o. f and leave no reference
inside o for update.
We solve these remaining problems and hence eliminate

the need for manual refactoring through our second insight:
since data objects created by most applications are indeed
immutable and conined (i.e., they never escape to external
objects), we can develop an optimistic technique to spec-
ulatively transform programs assuming immutability and
coninement of data objects. Such a transformation can easily
succeed with little user involvement and apply to a broad
range of applications, as long as the transformed program
can notice and respond appropriately to rare mis-predictions
about data-object properties at run time.

Gerenuk. Based on these insights, we developed Gerenuk, a
Java-based compiler and runtime. The Gerenuk runtime con-
tains a serializer that represents all data objects in an inlined,
serialized form with all headers and pointers eliminated and
stores them in native-memory bufers. The Gerenuk com-
piler automatically transforms a program, converting its
data-manipulating statements and making them operate di-
rectly on these inlined native bytes. Achieving this ambitious
goal has three major challenges.
The irst challenge is how to identify which code state-

ments to transform. Our approach is based on a key obser-
vation that data-processing logic is task-based. As illustrated
in Figure 1, each task (e.g., a stage in Spark or a Map/Reduce
execution in Hadoop) starts at a shuling phase where each
compute node reads in a new set of data items; these data
items get deserialized into objects, which then low through
a series of system-level and user-deined processing func-
tions; at the end of the task is another shuling phase that
serializes each object into a sequence of bytes and then sends
them to iles or the network. In other words, data lows from
the deserialization point at which heap objects are created
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from native bytes (e.g., a call to method readObject) to the
serialization point at which heap objects are converted back
to bytes (e.g., a call to method writeObject).

...
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Output to 
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Object reference

Figure 1. The low of data objects.

This data low naturally deines a speculative execution
region (SER) for transformation and execution. Using these
start and end points, Gerenuk automatically identiies the set
of statements involved in the low, transforming them with
the goal to skip the entire deserialization and serialization
process and let the processing logic operate directly over the
native, serialized form of data objects.

Note that this is a one-stone-multiple-bird approach. First,
no objects including their headers and pointers are created
for data items, leading to great reduction in memory con-
sumption and GC overhead. Second, Gerenuk eliminates
almost all serialization/deserialization efort, which has been
shown to be expensive [55, 56]. Third, since a native bufer
stores only data items for one particular task, the bufer is
naturally amenable to region-based memory management Ð
we can safely release the bufer as a whole at the end of
the task without even needing to scan the items. Essentially,
Gerenuk removes all three types of overheadÐmemory us-
age ineiciency, serialization, and garbage collectionÐfrom
the managed runtime for data processing whereas existing
techniques could eliminate only one or a subset of them.
The second challenge is how to transform the program

to conduct processing over native bytes, which represent
inlined data structures rooted at a set of top-level objects. For
example, in Gerenuk, our serializer represents each data ob-
ject o as a byte sequence by inlining the data payloads from o

as well as other objects reachable from o on the object graph,
with all pointers eliminated. The question here is, thus, with-
out deserialization, can the transformed program directly
process each inlined data structure containing only payloads,
rather than individual objects connected by pointers?

As discussed earlier, we adopt an optimistic approachÐwe
transform the program speculatively assuming that all data
objects are immutable and conined in their data structures.

Our compiler identiies a set of program locations at which
this assumption could be potentially violated. The compiler
instruments, at each violation point, code that aborts the SER.
Once a SER is aborted, the Gerenuk runtime discards the cur-
rent task execution and re-executes the original, unmodiied
task with the same input data. This task deserializes bytes
back into heap objects and uses these objects for processing.
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Figure 2. Gerenuk’s overview.

1 class DenseVector[V] (

2 val data: Array[V],

3 val stride: Int)

4 ...

5 }

1 class LabeledPoint (

2 val value: Double ,

3 val features:

4 DenseVector[Double ])

5 ...

6 }

Figure 3. A user-deined data structure in Spark for Logistic
Regression program.
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Figure 4. The diference in memory layout between the heap
and native-bufer (inlined) representation of an array of three
LabeledPoint objects; the space overhead incurred by the
JVM is nearly 2× larger than the actual data size.

The third challenge is how to safely re-execute upon a
violation. Our solution is based on a simple observation that
data objects are immutable and hence the execution of any
task would never modify the input bufers (i.e., the execu-
tion gets aborted before modifying). Upon the abortion of a
SER, the current executor (e.g., a thread in Spark or a JVM in-
stance in Hadoop) is terminated with all intermediate bufers
discarded. The failed SER may have modiied some control
objects, but once the executor terminates, all of the control
information of the executor is removed as well. Gerenuk
then launches a new executor to execute the łslow pathž,
which is the unmodiied SER, with the original input bufers.

Note that this is possible only for data-parallel systems Ð
there is no global state shared between multiple tasks (e.g.,
a similar observation has also been used in [30]) Ð a SER
either succeeds and produces results to be fed to another
SER, or aborts, causing the system to instead execute the
unmodiied version of the same SER on the same input. The
implementation of abort only needs to call a few methods to
launch a new executor and terminate the current executor.
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An overview of Gerenuk is illustrated in Figure 2. We have
implemented the Gerenuk runtime in OpenJDK 8 and the
Gerenuk compiler on the Soot Java compiler framework [1].
Using Gerenuk, we automatically transformed a set of ap-
plications on Apache Spark [73] and Apache Hadoop [12].
Gerenuk’s transformation has improved the end-to-end per-
formance for these two systems by an overall factor of 2×
and 1.4×, respectively.

2 Extended Motivation

How Data Path and Control Path Mix. Consider the
class StreamingContext, which is the main entry point for
streaming-related functionality in Apache Spark.Manymeth-
ods deined in this class are data-processing methods (e.g.,
textFileStreamwhich creates an RDD from a text ile) while
other methods contain control code that does not manipulate
user data. All of these methods need to share certain global
control state, which is maintained in instance ields of the
class. For example, one of these ields stores the current ile
system directory information, which is used by both data
manipulation methods and control methods.
If we follow the whole-class transformation philosophy

in Facade [58], developers must manually refactor and
split StreamingContext into a data component (e.g., a new
DataContext class) and a control component (e.g., a new
ControlContext class) that contain methods that process
vs. do not process user data, respectively. Since the shared
instance ields that used to be in the same class now get
split into two copies (one in the heap and a second in native
memory), the user must also guarantee consistency between
these copies. For any real-world system, such manual refac-
toring efort is huge (e.g., several weeks to months), creating
signiicant obstacles for practical adoption.

Analytical Motivation. To understand the space overhead
incurred by the object-based data representation, we studied
a Spark application that computes logistic regressions and
analyzed the number of bytes consumed by its data objects.
In this application, the user deines a LabeledPoint class
as the data type (i.e., the type of the RDD elements). This
deinition is shown in Figure 3. Each LabeledPoint object
references a variable-length vector of double values.
Figure 4 compares the object-based representation of an

array of three LabeledPoint objects and its corresponding
native, inlined representation. Under the native representa-
tion, each inlined LabeledPoint contains 3 int and 3 double

values, taking 36 bytes. An array with three LabeledPoint

records all inlined only needs 4+36×3 = 112 bytes, where 4
is the number of bytes needed to record the array size. How-
ever, the object-based representation, which connects these
objects with pointers, requires, in addition to the 112-byte
data payload, an overhead of 8 object headers and 9 object
references. These headers and references take 8×16+9×8
= 200 bytes, bringing the total bytes needed to 312 bytes.
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Figure 5. The ratios between the total bytes of data objects
and the size of their actual payload.

Hence, the object representation overhead is nearly twice
the size of the actual data payload.

Empirical Motivation. To empirically quantify this space
overhead and its related runtime overhead, we ran three
graph analytics programs on Apache Spark. We used Spark
version 2.1.0 on a cluster of 11 nodes, each with 2 Xeon(R)
CPU E5-2640 v3 processors, 32GB memory, 1 SSD, running
CentOS 6.9 and connected by a 1000Mb/s Ethernet. The
three graph programs were PageRank (PR), ConnectedCom-
ponents (CC) and TriangleCounting (TC) over four real-
world graphs, LiveJournal [15], Orkut [36], UK-2005 [17],
and Twitter-2010 [42]. Kryo [41], a high-performance serial-
izer, was used.
To understand the size diference between data objects

and their serialized bytes, we modiied Kryo to report the
numbers of bytes occupied by data objects before and after
they were serialized by Kryo for each shule. The irst num-
ber includes the size of the actual data as well as the space
overhead incurred by the JVM, and the second number rep-
resents the size of the actual data in the inlined form. Finally,
these numbers were aggregated across the machines.
Figure 5 reports the ratios between these two numbers.

Across the programs, the overall ratio is 3.5×. In other words,
the extra space incurred by the object-based representation is
2.5× as large as the actual payload size. The main reason for
this large overhead is that these applications create billions
of small objects (e.g., java.lang.Integer, java.lang.Long
or java.lang.Double), whose corresponding header/pointer
overhead cannot be amortized by actual payloads.

Anticipated Beneits. These results highlight several po-
tential beneits that can be achieved if the processing engine
can work directly over native bytes. First, we expect that
much of the 2.3×memory overhead can be eliminated as the
program directly operates over the serialized bytes. Memory
savings in Big Data systems can often translate to increased
degrees of parallelism due to more available memory and
thus the ability to run more executors. Second, we expect
signiicant reductions in computation time due to reduced
pointer chasing efort as well as eliminated runtime checks
(e.g., array bound checks and write barriers performed by
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the managed runtime). Third, we expect that the serializa-
tion/deserialization time, which could take up to a third of
the execution time [55, 56], will be signiicantly reduced
because the same (native) format is used when data is trans-
ferred over the network. Finally, we expect large savings
in garbage collection since data items are no longer repre-
sented as objects, and hence, the GC only needs to scan a
much smaller number of objects. In the initial experiment
described earlier in this section, we did not see much GC
overhead (< 10%) from Spark’s executions because the size
of data per machine was small relative to the size of the heap
(i.e., 30GB) used. However, the GC overhead can grow to
dominate the execution for large inputs, as shown in prior
works [19, 34, 51, 57] as well as our experimental results (ğ4).

Applicability. Gerenuk is designed speciically for
datalow systems. There are two conditions under which
a system is amenable to our transformations. First, data
objects exhibit the data low shown in Figure 1 (e.g., there
are sources and sinks). Second, data objects do not carry
state and are immutable. While our current implementation
does not work directly for other datalow systems such as
Scope [20], Hyracks [39], or Naiad [54], the aforementioned
two conditions hold for these systems, and hence they can
all beneit from the proposed transformations. Gerenuk
cannot optimize systems for which the conditions do not
hold. For example, if a system does not clearly deine sources
and sinks for data objects, we cannot identify the datalow.
As another example, if data objects are not immutable, the
transformed program would always abort, resulting in large
performance penalties.

3 Gerenuk Design and Implementation

Gerenuk contains a compiler that performs speculative trans-
formations and a runtime that implements speculative execu-
tion logic. During the execution of the transformed program,
the input of each computational iteration is a sequence of
bytes representing a set of inlined data structures each rooted
at a top-level data item (i.e., an RDD element). The output of
the iteration is another sequence of bytes, representing the
generated data structures to be shuled.

3.1 User Efort

Gerenuk’s compiler takes as input a user program (e.g., a
Spark datalow program or a Hadoop map/reduce program)
and three types of annotations described below. It then trans-
forms both the user application and data-processing system
code, and inally outputs a new version of the user applica-
tion and system code that operates over native data. The old
version of the code is kept, since it will be executed when a
SER is aborted. Gerenuk requires the user to provide three
pieces of information.

First, since a speculative execution region starts at a dese-
rialization point and ends at a serialization point, Gerenuk

relies on the user to identify these two points. For Hadoop,
a call to WritableDeserializer.deserialize() in method
nextKeyValue of class ReduceContextImpl is a deserialization
point, while a call to WritableSerializer.serialize() in
method append of IFile is a serialization point. There can be
multiple deserialization and serialization points for a system.
Gerenuk uses these (de)serialization points to automatically
identify the statements through which data lows for trans-
formation (see ğ3.5). Although specifying serialization APIs
requires system-level knowledge, this task can be done by a
Spark or Hadoop system developer once and for all and has
only one-time cost, since Spark and Hadoop all have clear
serialization modules and their APIs rarely change.
Second, the user needs to specify the types T of top-

level data items processed in the program (e.g., via anno-
tations). For example, for a Spark program, these data types
include the element types of the RDDs in the program (e.g.,
DenseVector). For a Hadoop program, they include the types
of keys and values that are read from or written into HDFS.
The Gerenuk compiler will identify the data structure rooted
at each such type to establish a mapping between its native
(inlined) format and object-based format (see ğ3.3).

Third, the user speciies the type of data collections. In
the case of Spark, the collection type is any subtype of
org.apache.spark.rdd.RDD; for Hadoop, each input or out-
put bufer is a data collection and the types of these bufers
need to be speciied. Based on these speciied collections,
Gerenuk will generate new collection types that use long
as their elements instead of objects. For example, an RDD
type ResultRDD⟨DenseVector⟩ will be transformed into a new
type ResultRDD⟨long⟩ that represents DenseVector objects na-
tively using byte bufers and each long value indicates the
starting address of a data record.

3.2 SER Code Analyzer

The irst component of the Gerenuk compiler is a context-
sensitive, path-sensitive static analysis that traces the low
of data objects in a SER to identify all statements involved
in the SER. These statements need to transformed, in the
next step, to operate over the native bytes. Since we analyze
Java bytecode rather than source code, Gerenuk works for all
programming languages executed on JVMs, including Java,
Scala, etc. Treating each pair of (user-speciied) deserializa-
tion and serialization points as a source and a sink, Gerenuk
analyzes both system and user application code to identify
all statements through which data objects can low from the
source to the sink. These statements form the data path we
want to automatically transform.

Our analysis is similar to a static taint analysisÐit starts
by tagging the variable deined at a deserialization point
(e.g., v in v = readObject()) and then propagates the taint
mark from one variable to another by tracking the data low
from the source to the sink. In general, for each assignment
a = b, we taint a if b is tainted. A static taint analysis is
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known to be imprecise due to its reliance on static modeling
of heap accesses and static resolution of virtual method calls.
To make the analysis report less irrelevant information, we
adopt the following three approaches.
First, for an object ield read or an array read, our anal-

ysis tracks the low from both the pointer and the value
dereferenced from the object ield. For example, for a read
statement a = b.f, suppose o is an allocation site in the
points-to set of b. We taint a if (1) either b is tainted, or (2)
the ield o. f is tainted where o. f statically models the heap
location referenced by b . f . The reason here is that if the
object o referenced by b is a data object that comes from
deserialization, then the object referenced by b . f should also
be a data object and hence be tracked by our analysis.
For an object write such as b.f = a, we do not taint the

left hand side o. f because if a references a data object, this
write would indicate that the object escapes the current data
structure to a diferent one. In this case, our compiler will
insert an abort instruction at the write to abort the SER
instead of tracking the object further. How abort instructions
are inserted is discussed in detail in ğ3.4.
For an array write such as b[. . .] = a, we only need to

taint o.ELE (where ELE is a placeholder representing array
elements) if the object (say o1) referenced by a is a top-level
data record (of a user-deined data type T ). In this case, this
statement represents writing of a data record into a data
collection (e.g., the backbone array of an RDD) and hence
we must track the low of the object. If o1 is a lower-level
object that belongs to the data structure rooted at type T ,
this write represents an escape operation and our compiler
would insert an abort.

Second, unlike a traditional taint analysis that propagates
the taint mark in all directions, the sink information in
our analysis provides tremendous help in pruning away
lowsÐlows that do not eventually lead to the sink are often
due to the conservative handling of static analysis; they are
eliminated and the statements not lowing to the sink are not
considered for transformation. The underlying assumption
here is that data objects in a SER will eventually all go to
some kind of serialization (e.g., to disk iles or the network),
which is the case for modern data-parallel systems. An avid
reader might notice that the correctness hinges on whether
all serialization points can be found. Therefore, a conserva-
tive approach is to insert an abort on the paths that do not
lead to any sink Ðeven with a missed serialization point, the
program can still run correctly.
Third, control low is not tracked. Since our goal is to

ind a set of methods to be transformed instead of tracking
full-blown information low, we do not taint a variable if
it is only control-dependent on a predicate that involves
a tainted variable. Furthermore, unlike a traditional taint
analysis that needs to propagate taint marks via arbitrary
arithmetic operations, we focus only on object references;
primitive-type values are irrelevant in this context.

Eventually, our analysis returns a set of statements (and
their containing methods) on the lows of data objects from
the point at which they are created from deserialization to
the point at which they are serialized to bytes.

3.3 Data Structure Analyzer

The second component of Gerenuk compiler is a data struc-
ture analyzer. Given a top-level data typeT speciied by users
(like an element type of an RDD as discussed in ğ3.1), the
analyzer explores all classes referenced directly or transi-
tively by T , and outputs a map that maps each primitive-
or array-type ield in these classes to its corresponding of-
set inside the native bufer-based representation of T . This
ofset information will later be used by Gerenuk to replace
object-based ield accesses in the original program with na-
tive bufer-based accesses in the transformed program.
At a high level, our algorithm uses a DFS traversal, start-

ing fromT , to recursively explore a class hierarchy rooted at
the top classT . During the traversal, it calculates ofsets in a
bottom-up mannerÐit calculates the size of each class at the
bottom of the hierarchy and takes into account their sizes
when computing ofsets for those primitive- or array-type
ields in top classes. If every class has a ixed size (i.e., does
not directly or transitively reference an array), the algorithm
is straightforward, as the class sizes and ield ofsets can all
be statically calculated. If a class has a variable size, our algo-
rithm uses symbolic expressions in the size/ofset calculation,
which we elaborate below.

Consider the following class that deines a data structure
that does not have a statically decidable serialized size: class
C { int a; long[] b; double c; }.
The ofsets for ield a and ield b in a record ofC are straight-
forward, 0 and 4, but the ofset for c is non-trivial. The ofset
of ield c consists of (1) the size of ield a, which is 4, and
the size of array-ield b in its native representation, which
further consists of (2) 4 bytes that stores the length of ar-
ray b, denoted as b .len and (3) the size of the content of
array b (8 × b .len). Since b .len is stored in front of the data
content of b and right after ield a, it can be accessed at
run time by an auxiliary function provided by our runtime
readNative, which takes three parameters, the base address
of the current record, the ofset in the current record, and
the number of bytes to read. Consequently, the length of b
can be computed by readNative (BASEC , 4, 4), with BASEC
representing the starting address of the current record of C
in the inlined bytes; the ofset of ield c can be computed by
4+ 4+ 8×readNative(BASEC , 4, 4); and the total size of class
C is 16 + 8×readNative(BASEC , 4, 4).

The above size expression of C will be used to compute
ofsets for the ields in classes that directly or transitively
reference C . Speciically, when the DFS traversal inishes C
and returns to an upper-level classC ′, BASEC will be replaced
with an expression containing a new symbolic value BASEC ′

representing the starting address of a record ofC ′. Eventually,
6



when the DFS exploration inishes back at the top-level type
T , all the ofset expressions are represented w.r.t. the starting
address of a record of T . The concrete value of this address
will be provided by the runtime during execution.

Special Cases. Special support is developed to handle
stringsÐsince strings are commonly used types, instead of
fully analyzing the String class, our analysis treats a string
as a character array; specialized string operations are pro-
vided to access and manipulate the array. Gerenuk supports
generics in Java/Scala. The analysis tracks the type parame-
ters that a class is instantiated on and uses this information
to determine the types of the class’s internal ields. Some of
the classes in the Java Collection framework (e.g., Vector<E>
has an internal array of type Object and not an array of type
E) do not fully make use of generic types for their internal
ieldsÐGerenuk has been extended with the knowledge of
internal ield types for commonly-used collections.
Our analyzer stops upon seeing a data structure whose

shape is not a tree. Such data structures cannot be repre-
sented without pointers. In practice, however, real-world
data types are often simple (e.g., at most two or three layers)
and we have never seen such structures in our evaluation.
Note that we built a customized serializer that inlines all
data records. Hence, we do not need to compute ofsets for
pointers as they do not exist in the serialized bytes.

3.4 Computing Violation Conditions

Taking as input the set of methods returned by the SER code
analyzer, Gerenuk transforms each method so that the trans-
formed method can process the inlined bytes. The central
idea of the transformation is to rewrite each ield access that
reads/writes a data object o as an access to o’s corresponding
inlined bytes stored in a native JVM bufer (that comes from
disk iles or the network). However, not all ield accesses in
the original program can be transformed. Before describing
our transformation algorithm, we irst present a list of viola-
tion conditionsÐthose under which memory accesses cannot
be performed on inlined data. Gerenuk transforms the pro-
gram optimistically while instrumenting abort instructions
at each violation point.
The fundamental assumption under which the trans-

formed program can successfully process the inlined data
is that objects in each data structure rooted at each user-
deined data type T are reference-immutable and conined in
the data structure. However, due to the conservative nature of
static analysis, the Gerenuk compiler often sees cases where
these conditions may be violated (although they may not
actually be violated at run time). To guarantee that our trans-
formation is safe, we build a łfencež around the violation
points by inserting abort instructions.

• Violation #1: Load-And-Escape.Consider the following
code snippet: v = n.f; o = new O(); o.g = v;

Suppose our analysis inds that variable n refers to an

object in an inlined data record (rooted at a user-deined
type T ). This case violates our coninement assumptionÐa
reference read from n.f escapes the data structure and gets
assigned into another object o. In the inlined bytes, such
a reference would not exist, and hence, this piece of code
would cause an execution failure.
• Violation #2: Disrupt-the-Native-Space. If there exists
a statement n.f = o that writes a reference of a regular
heap object o into an object n that is part of an inlined
data recordT , the execution would fail because the inlined
bytes cannot hold Java references. This is a violation of
our immutability assumption.
• Violation #3: Invoke-Native-Method. A violation oc-
curs if we encounter a call site p = n.m() where n is an
object in a data structure T and m is a native method, be-
cause a native method may create external side efects.
However, certain native methods are frequently invoked.
While calls to native methods are generally considered
as violations, Gerenuk provides customized implementa-
tions (that can work with the inlined bytes) for a set of
frequently-used native methods, such as clone, hashcode,
toString, and arrayCopy, to improve usefulness.
• Violation #4: Use-Object-Metainfo. A violation occurs
if the metadata (such as the lock) of an object in an inlined
data record T is explicitly used. An example code snippet
is v = n.f; synchronize(v){...}. Here variable n refers to
an object in an inlined data record and hence v also points
to an object in the data record. Use of v as a lock would
lead to a violation detected by our compiler because in the
transformed program, v and n are no longer objects and
hence no lock can be obtained from them.

Note that these four conditions are complete in describ-
ing immutability and coninement violationsÐno violations
can possibly occur without encountering an abort irst. This
can be easily seen by reasoning about the cause of viola-
tionsÐreference passing between native data and the Java
heap. In particular, there are two possible scenarios in which
reference passing can occur: (1) reads an object reference
from native data and writes it into the Java heap and (2) reads
a reference from the heap and writes it into a native bufer.
These two cases are covered, respectively, by the irst and
second violation conditions.

Attempting to read a reference from native data and use it
for any non-payload-access purposes (e.g., invoke a method
or obtain the object metadata) should also be forbiddenÐthis
is not possible to do in the transformed execution because no
object would exist in native bufers. Invocations of regular
methods will be inlined (see Case 9 in Algorithm 1) and not
exist after transformation. However, inlining cannot be done
for calls to native methods, and hence, the third condition
inserts an abort when encountering a native method call.
The fourth condition protects the execution from running
into any metadata-obtaining statement.
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Since we focus on data-parallel systems where data objects
are immutable and conined for most workloads, many of
these statically-detected violations are false positives due
to the conservative nature of a static analysis, and hence,
they do not occur during execution and also do not lead to
abort-and-retry under the Gerenuk runtime.

In most cases, a violation is generated when a lower-level
type (e.g., Vector) in the class hierarchy of a user-deined data
type T is instantiated in other locations; objects created in
these other locations can be mutated but those created under
T cannot. A conservative technique, such as Facade, has to
rely on human developers to manually refactor violating
statements to make sure the static analysis would not see
these statements during transformation. On the contrary,
Gerenuk does not attempt to successfully transform an entire
method/class; it simply inserts abort instructions, making it
signiicantly easier for our transformation to succeed.
All of the aborts that are inserted due to overly-

conservative static analysis will not be triggered at run time,
thus not degrading performance. Aborts may also be inserted
when a data type cannot be represented as inlined bytes (e.g.,
objects of the type can be updated) Ðthese aborts will be
triggered, although such cases are extremely rare.

3.5 Speculative Transformation

Gerenuk irst transforms each user-speciied collection class
(like RDD) by replacing each occurrence of each data type
T with a long value that indicates the starting address of a
record. In Spark, for example, all RDDs, after transformation,
use long as their element types and all their iterator imple-
mentations also return a long value. This transformation,
which is straightforward, is done before Algorithm 1 starts.

Given a set of statements returned by the SER code an-
alyzer, Gerenuk transforms each statement s into another
statement s ′ in which all accesses to data objects are re-
placed with accesses to the inlined bytes in native bufers.
Speciically, the transformation is applied to 8 diferent types
of statements that access objects whose classes are in the
class hierarchy discovered by the data structure analyzer, as
shown in Algorithm 1.

Replace and Emit in Algorithm 1 are two auxiliary func-
tions that, respectively, replace the current instruction with
a new instruction and emit a new instruction into the gener-
ated program.

We replace each reference-type variable with a long-type
variable representing the address of the data item in the
inlined bytes. These addresses are originated from the de-
serialization point (Case 1 in Algorithm 1)Ðwe replace the
deserialization method call such as readObject with a call to
method getAddress provided by our runtime to obtain the
address of the top-level record. The address gets assigned to
a long-type variable and propagated in the program.
In Case 2, each variable assignment is replaced with an

address assignment. Case 3 deals with the transformation

Algorithm 1: Our code transformation algorithm.
Input: (1) A set of statements S returned by the SER code analyzer;
(2) a set of classes C forming the class hierarchy of each inlined data structure;
(3) a map Sizes between each class in C and its (inlined) size;
(4) a map Ofsets between ields and their ofsets in the class hierarchy;
(5) a set V of violation points.
Output: A set of transformed statements S ′.

1 foreach Statement s ∈ S do
2 /* Case 1: deserialization point */
3 if s is a deserialization ła = readObject()ž then
4 Replace(łlong addra = getAddress()ž)

5 /* Case 2: regular assignment */
6 if s is ła = bž and Type(b) ∈ C then
7 Replace(łlong addra = addrbž)

8 /* Case 3: parameter-passing */
9 if s is ła = pž and p is a formal param then

10 if Type(p)∈ C then
11 Replace(łlong addra = addrpž)

12 /* Case 4: ield store on a data object*/
13 if s is ła .f = bž and Type(a) ∈ C then
14 of ← 0

15 if Ofsets[Type(a), f ] is a static constant then
16 /* Ofset is statically known*/
17 of ← Ofsets[Type(a), f ]
18 Replace(łwriteNative(addra ,ž + of + ł,ž + SizeOf(f) + ł, b)ž)

19 else
20 /* Ofset is an expression*/
21 Emit(łt = resolveOfset(ž + Ofsets[Type(a), f ] + ł)ž)
22 Replace(łwriteNative(addra , t , b)ž)

23 /* Case 5: ield load on a data object */
24 if s is łb = a .f ž and Type(a) ∈ C then
25 of ← 0

26 if Ofsets[Type(a), f ] is a static constant then
27 /* Ofset is statically known*/
28 of ← Ofsets[Type(a), f ]
29 Replace(łb = readNative(addra ,ž + of + ł, ž + SizeOf(f )

+ł)ž)

30 else
31 /* Ofset is an expression*/
32 Emit(łt = resolveOfset(ž + Ofsets[Type(a), f ] + ł)ž)
33 Replace(łb = readNative(addra , t , ž+ SizeOf(f )) + ł)ž)

34 /* Case 6: allocation site */
35 if s is ła = newA()ž and A ∈ C then
36 size← 0

37 /* The size of the structure is a constant*/
38 if Sizes[łAž] is a static constant then
39 size← Sizes[łAž]
40 Replace(łappendToBufer(ž + size + ł)ž)

41 else
42 /* The size is an expression */
43 Emit(łt = ž + Sizes[łAž])
44 Replace(łappendToBufer(t )ž)

45 /* Case 7: violation handling */
46 if s ∈ V then
47 Emit(łAbort()ž)

48 /* Case 8: serialization point */
49 if s is a serialization łwriteObject(a)ž then
50 Replace(łgWriteObject(addra)ž)

51 /* Case 9: method call */
52 if s is a call łn.m(a)ž and Type(n) ∈ C andm is not native then
53 InlineAndTransform(m)

of parameter passing statements. Case 4 and Case 5 han-
dle heap stores and loads, respectively. These heap accesses
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are replaced with calls to our methods writeNative and
readNative, respectively, that access the inlined bytes.
Depending on whether the ofset of the ield is a static

constant or an expression that contains symbolic variables,
code generation is done in diferent ways. For example, if
the ofset is an expression, the expression will be resolved
by the runtime via an auxiliary function resolveOffset (see
ğ3.6), assigned to a temporary variable t , which is then used
to invoke writeNative and readNative.
The treatment of allocation sites (Case 6) is similarÐwe

invoke our auxiliary function appendToBuffer with the size
of the entire inlined data structure rooted at the type (e.g.,
A) as an argument. This size, computed by the data structure
analyzer, may be a static constant or a symbolic expression.
Case 7 shows the handling of violationsÐour compiler

simply inserts an abort instruction right before each violat-
ing statement. This guarantees that the execution will never
reach the violating statement at run time.

Case 8 deals with the serializationÐthe call to writeObject

is simply replaced with a call to our serializer gWriteObject,
which takes a native address as input and writes the entire
record into the output stream.
If a call is encountered (Case 9) and the call is made on

an object whose type is in the class hierarchy C , we inline
the methodm into the caller and recursively transformm’s
body. We use a pointer analysis [48] to resolve virtual calls.

Discussion. We only represent data structures rooted at
each user-deined typeT as inlined bytes and these bytes are
processed only by the transformed statements. If any type
involved in the data structure is also used in other locations
(e.g., control path), the original type will still be used there.
Our data structure analyzer analyzes each T and records its
structure into a schema ile, which will be used to perform
ofset computation during transformation, serialization, and
deserialization. Our underlying assumption here is that the
creation and manipulation of data records are all performed
over native bufers. During the execution of a SER, these data
objects can only interact with the heap through reads/writes
of primitive-type values; no references are allowed to be
written into these bufers.

3.6 The Gerenuk Runtime

The Gerenuk Serializer. As the irst component of
Gerenuk’s runtime, we implemented a new serializer/deseri-
alizer using a similar algorithm to existing serializers such
as Kryo. Since our transformation is based on the statically
computed ofsets, we need to guarantee that the way our
compiler computes these ofsets is consistent with how data
is actually serialized.
Our algorithm is standard Ðit recursively traverses the

object graph starting from each given top-level object and
inlines the structure by copying, recursively, the primitive-
type contents for each object into a bufer. Each top-level

object has a special ield storing the size of the entire data
structured rooted at the object after inlining. Each array has
a ield storing its length. Pointers are all eliminated.

DeterminingOfsets. Recall that each object in a data struc-
ture rooted atT has an ofset computed statically by our data
structure analyzer (ğ3.3). At run time, the content of the
object will be written into a native bufer at the location
speciied by the ofset. However, if an object (say o) follows
an array in the data structure, o’s ofset is represented as a
symbolic expression that contains the length of the array as
a variable. This expression will be resolved at run time by
the function resolveOffset, shown in Algorithm 1.
One challenge in implementing resolveOffset is that if

o is created earlier than the array during the execution, o’s
location cannot be determined because the length of the
array is unknown. We solve the problem by caching o’s
content in a temporary bufer and later copying the content
to the actual native bufer when that array is created and
its length becomes available. This can be done in an event-
driven manner. For any object whose statically-computed
ofset depends on the array length, we deine a handler and
register it with a runtime service that monitors the array
creation. Upon the creation of the array, the service generates
an event and sends it to all the handlers, which respond
by re-evaluating the ofsets and copying the data from the
temporary bufers into the actual bufers.

Re-execution. One major challenge of implementing the
re-execution logic is how to restore a program state. A tradi-
tional approach is to perform record/replay during the exe-
cution, which incurs heavy runtime overhead. Fortunately,
our work targets tasks in data-parallel systems, which do
not share state with each other. The dependences between
diferent tasks form a datalow graph where the output of
one task becomes the input of another. If one task instance
fails (e.g., abort), we can simply terminate the executor ex-
ecuting the instance and launch a new executor to execute
the same task with the same input.
The question is how to guarantee that we can still have

access to the original input. Our solution is based on a sim-
ple observation Ðsince data objects in native bufers are
immutable (otherwise the execution would abort), these
bufers that contain the input data can never be written dur-
ing the execution. As long as we make sure that the newly
created bufers (e.g., when an RDD is materialized) are sepa-
rated from the input ones, the input bufers would remain
clean throughout the execution. Hence, once a SER aborts,
Gerenuk launches a new executor that executes the original
version of the same (failed) task with the same input bufers.

This logic of launching the new executor needs to be
speciied by the Gerenuk user in a method called launch.
It simply makes a few calls to launch a new executor (thread
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or process) to work on the same data input. This method is
easy to write and application-independent.
It is clear that the roll-back logic has a performance

penalty, because upon a roll-back, all computations up to
the violation point would be wasted. However, our empir-
ical evaluation shows that aborts are rare for real-world
programs and datasets, and we thus did not observe any
violation triggered during our experiments.

Memory Management. Another clear advantage of
Gerenuk’s transformation is that all data objects are guar-
anteed to stay in native memory and never escape to the
heap; likewise, temporary and control objects all stay in the
heap and can never low into native memory. This property
of the memory leads to easy and straightforward implemen-
tations of region-based memory management and garbage
collection for data objects Ðwe can simply deallocate the in-
put native bufers for each task once a SER ends successfully.
This added beneit of improved garbage collection would
not cause safety issues because Gerenuk guarantees no heap
objects can low into these bufers.

4 Evaluation

We wrote approximately 35K lines of code in Java, Scala,
and C++. Our compiler infrastructure is based on the Soot
compiler framework, with additional support for analyzing
Scala programs (in particular, lambdas).

To evaluate Gerenuk, we transformed Apache Spark [73],
andApacheHadoop [12], twomost popular, widely-deployed
Big Data systems. All of our experiments were run on an
11-node cluster, each with 2 Xeon(R) CPU E5-2640 v3 proces-
sors, 32GB memory, 1 200GB SSD, running CentOS 6.9 and
connected via IniniBand. All benchmarks were run for three
times and the median value is reported. We also veriied that
no incorrect results were produced by our transformation.

4.1 Improving Apache Spark with Gerenuk

We evaluated Gerenuk using Spark 2.4.0, under Hadoop 2.9.2
and Scala 2.11.8. Overall, Gerenuk has transformed state-
ments in 55 diferent classes in Spark. The static analysis
reports more than 126 violation points, none of which were
triggered at run time. We used a set of ive programs: PageR-
ank (PR) and KMeans (KM) from the GraphX [35] libraries,
as well as Logistic Regression (LR), Chi Square Selector (CS)
and Gradient Boosting Classiication (GB) from the MLlib

libraries. These programs were selected due to their diverse
computation and data types and can represent a large class
of applications.
Note that we focus on iterative programs for our bench-

mark selection because iterative processing is the domain
for which Spark was designed. One observation here is that
the top-level data types T used in four of the ive programs
(except PageRank) have complex data structures that have 3
or 4 levels of objects connected by pointers. These data types

cannot be stored directly in native memory by DataFrame

and Tungsten. For PageRank that uses simple types, we com-
pared our performance with that of Tungsten and our results
are reported in ğ4.3.
Table 1 shows the details of the input of those programs.

Each Spark worker was given all available cores (i.e., 32)
on each machine. The JVM on each node was evaluated
under 3 diferent heap sizes: 10GB, 15GB, and 20GB. Kryo,
the recommended high-performance serializer, was used.

Running Time. Figure 6(a) shows the runtime compari-
son between Spark and Gerenuk. A summary of diferent
aspects of improvements is reported in Table 3. On average,
Gerenuk makes Spark run 1.96× faster. The majority of the
savings comes from the reduced computation time. Since all
(billions of) data objects are represented as inlined native
bytes, not only is data locality improved, Gerenuk eliminates
many sources of runtime overhead, including pointer chas-
ing, write barriers (i.e., a piece of code executed per object
write for GC purposes), and array bound checks.

Note that serialization and deserialization is not com-
pletely eliminated by Gerenuk, as shown in the purple and
orange bars in Figure 6(a). Most of these costs are associated
with sending closures (i.e., lamdas) from the driver to worker
nodes, not data objects.
Reduction in the GC time is moderate (i.e., 37%). That is

mostly because GC did not take much time in our experi-
ments with Spark Ð on average, only 12% of the execution
was spent on GC. In an environment where GC dominates
the execution (e.g., when the data size is much larger than
the heap size), we expect more savings in the GC time from
a Gerenuk-transformed program.

A comparison among the three heap conigurations shows
that, as the heap size grows, the performance gain becomes
less although the diference is only marginal. For example,
when the heap size is 10GB, the Gerenuk-transformed pro-
grams achieve a 2.02× speedup, which is reduced slightly to
1.93× when each worker was given twice as much memory.
This is expected since with a smaller heap, Spark programs
had increased GC efort, while for Gerenuk-transformed pro-
grams, their working sets were allocated primarily in native
memory and not subject to the GC. Hence, the performance
of the original Spark is much more sensitive to the heap size
than that of the transformed programs.

Memory. Comparisons of peak memory usage are reported
in Figure 7(a). Since Gerenuk uses native memory while the
original Spark uses managed heap, to enable a fair compari-
son, we periodically ran pmap to measure the process-level
memory consumption and reported the maximum consump-
tion in Figure 7(b). Across all benchmarks under diferent
heap conigurations, Gerenuk saves up to 38% of memory,
with an average of 18%. These savings are primarily from
the elimination of object headers and references.
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4.2 Improving Apache Hadoop with Gerenuk

We evaluated Gerenuk on Hadoop’s latest version (2.9.2)
using two real-world datasets: the full StackOverlow and
Wikipedia data dumps. Table 2 shows the details of the seven
programs we used. These programs are also real-world pro-
grams that were uploaded/discussed by developers on Stack-
Overlow for technical inquiries. We converted them (e.g.,
by adding some code to make them compilable) for use as
our benchmarks.

Overall, Gerenuk transformed statements across a total of
22 classes. Similarly, more than a hundred violation points
were generated by the static analysis, but none of them were
triggered during execution. The max heap size for each map-
per and reducer is 15GB and 30GB, respectively.

Name Dataset (Size) Data Type T

PageRank (PR) LiveJournal (1GB) String, Double
KMeans (KM) Synthetic 600M points (30GB) DenseVector
Logistics Synthetic 10M points LabeledPoint,

DenseVectorRegression (LR) each with 10 features (2GB)
Chi Square Synthetic 55M points, LabeledPoint,

SparseVectorSelector (CS) each with 28 features (37GB)
Gradient Boosting Synthetic 55M points, LabeledPoint,

DenseVectorClassiication (GB) each with 28 features (37GB)

Table 1. Description of Spark programs.

Name Dataset (Size) Description

IUF [3]

StackOverlow

(37GB)

Inactive Users Filtering
UAH [8] Active User Activity Histogram
SPF [6] Spam Posts Filtering
UED [4] User Engagement Distribution
CED [2] Community Expert Detection
IMC [7] Wikipedia Data In-Map Combiner
TFC [5] (49GB) Term Frequency Calculation

Table 2. Our Hadoop programs and their descriptions.

Running Time. Figure 6(b) shows the time comparison
between the original Hadoop programs and the Gerenuk-
transformed programs. Table 3 also shows the performance
of Gerenuk normalized to that of the baseline of across all
benchmarks and all conigurations.
The end-to-end speedup for Hadoop is, on average, 1.4×.

Similar to Spark, Gerenuk’s beneit is achieved primarily
from the reduced computation, which dominates the execu-
tion (e.g., on average 96.5% of the total time). The time spent
on computation is reduced by 26% when using the inlined
native bytes. The gain here is smaller, compared to what is
observed in Spark, because of the pervasive use of primitive
types such as Long, Double, Integer and String in Hadoop.
Since the data types are simple and do not contain com-

plex pointer usage, they have already been well-optimized
in the Hadoop. For example, in shuling, key-value pairs
are already organized in a byte array in each bufer to be
sorted. Due to these optimizations, the cost of serialization

and deserialization is small even for the original programs.
Although the Gerenuk-transformed programs do not serial-
ize and deserialize any data, the savings here are minor.

Memory. Because our Hadoop programs created billions
of small data objects (e.g., of primitive and string types),
inlining their data contents brings signiicant reductions
in memory usage due to the elimination of all headers of
these objects. As can be seen in Figure 7(b), the peak memory
consumption on a worker node is reduced by up to 42% (with
an average of 31%).

FW Overall GC App Mem
Spark 0.28 ∼ 0.93 0.44 ∼ 0.89 0.28 ∼ 0.93 0.62 ∼ 0.92

(0.51) (0.63) (0.50) (0.82)
Hadoop 0.51 ∼ 0.87 0.23 ∼ 0.87 0.49 ∼ 0.88 0.58 ∼ 0.84

(0.72) (0.54) (0.74) (0.69)

Table 3. Summary of Gerenuk performance normalized to
baseline in terms of Overall run time,GC time,Application
(non-GC) time, andMemory consumption across all settings.
A lower value indicates better performance. Each cell shows
a percentage range and its geometric mean.

4.3 Comparing with Existing Systems

Spark Tungsten and DataFrame. Project Tungsten is a ma-
jor efort of Spark aiming to bring the system performance
close to łbare metalž. Tungsten introduces the DataFrame API
that automatically organizes data in native memory and per-
form operations over them directly. At the irst glance, Tung-
sten and DataFrame appear to be similar to what Gerenuk
aims to achieve. However, the DataFrameAPI has a signiicant
limitation in that it can only support simple data types that do
not involve structures and pointers (so that an iterator can be
constructed appropriately to traverse data records). Complex
user-deined types, such as DenseVector and SparseVector

used extensively in machine learning algorithms, cannot
beneit from Tungsten at this moment.
In our benchmark suite, PageRank is the only program

whose data type can be optimized under Tungsten. We
rewrote PageRank by using the DataFrame API and ran it
with Tungsten enabled. Note that to use DataFrame and Tung-
sten, Spark needs to dynamically generate query plans. This
does not work well for iterative algorithms such as PageRank
because the query plan can keep growing. This is a known
and yet unresolved issue since the beginning of DataFrame1.
During our experiment, the DataFrame-based implementation
of PageRank failed to converge even after 15 hours (while
the RDD-based implementation reached convergence in less
than 250 seconds). To reduce the execution time, we had to
ix the number of iterations to 10. The performance com-
parison between the original PageRank, Tungsten-enabled
PageRank, and Gerenuk-transformed PageRank is shown in
Figure 8(a).

1htps://issues.apache.org/jira/browse/SPARK-13346.
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Figure 6. Runtime comparisons for Spark (a) and Hadoop (b); each group compares running time, for each program, between
the baseline on the left and the Gerenuk version on the right; each bar is further broken down into four components:
computation (in blue), GC (in red), serialization (in purple), and deserialization (in orange).
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Figure 7. Peak memory comparisons between the baseline and the Gerenuk version for Spark (a) and Hadoop (b); memory
consumptions are collected by periodically running pmap.

The Gerenuk-transformed version is about 2.2× faster
than the Tungsten-based version Ð the major savings come,
again, from the reduced computation time. Since both Tung-
sten and Gerenuk use native memory, the amounts of GC
eforts were comparable in these two versions.
To enable a fair comparison, we added a WordCount

program that does not have iterative logic. A comparison
between the original, the Gerenuk-transformed, and the
Tungsten-enabledWordCount is shown in Figure 8(b). In this
case, Tungsten outperforms Gerenuk by 20% primarily due
to Tungsten’s string optimizations, which are not performed
in Gerenuk. However, these optimizations are designed for
simple structured data while Gerenuk targets general user
types and data structures.

Yak [57]. Yak is a Big-Data-friendly GC that is designed to
enable region-based memory management for data objects.
To understand Gerenuk’s ability in reducing the GC cost,
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Figure 8. Comparison with Tungsten.

we have compared Gerenuk extensively with Yak. To ensure
Yak is at its best performance, we obtained Yak’s source code
from the authors of [57] and replicated the environment
described in [57]. We used the StackOverlow dataset as
input and annotated the program to enable the Yak optimiza-
tions (i.e., by putting epoch_start() in the Hadoop method
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setup() and epoch_end() in the Hadoop method cleanup()).
We also followed the heap conigurations described in [57]:
for each map and reduce worker, we used two diferent heap
conigurations: 3GB (map) + 2GB (reduce) and 2GB (map) +
1GB (reduce). The experiment was done on the same cluster
as described earlier in this section.
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Figure 9. Comparison with Yak using Hadoop IMC.

Due to space constraints, we only report the result for
the program IMC here. For the other programs, similar be-
haviors were observed. Figure 9 shows the execution time
comparison for Hadoop between using the Parallel-Scavenge
GC (i.e., the default GC in OpenJDK 8), Yak, and Gerenuk.
Clearly, the GC cost for the Gerenuk-transformed IMC is
lower than that of both Parallel-Scavenge and Yak. Com-
pared to Parallel-Scavenge, the amount of GC efort during
the execution of the transformed program was reduced by
a factor of 13.7×. Compared with Yak, Gerenuk further re-
duces the GC time by 19%. This is because we do not need to
scan objects when performing deallocation Ð our compiler
guarantees that control objects can never low into native
bufers while Yak does not have such guarantees.

Furthermore, Gerenuk reduces computation signiicantly
while Yak incurs additional overhead due to the cost of its
write barrier that is executed per object write to record inter-
region references. In particular, Gerenuk reduces the com-
putation time by 45.6% compared to Yak and 35.6% com-
pared to Parallel-Scavenge. The costs of serialization and
deserialization, which take about 10-13% of the total time in
Parallel-Scavenge and Yak, have been completely eliminated
in Gerenuk. Overall, the Gerenuk-transformed program runs
2.4× faster than Parallel-Scavenge and 1.8× faster than Yak.

Facade [58] and Flare [29]. Facade transforms programs
at the class granularity and relies on the human developer
to refactor the program to create a clear boundary between
the control and data path. We could not successfully compile
Spark and Hadoop using Facade due to Facade’s inability to
support modern language features such as lambdas and due
to its heavy requirement to manually refactor code.

Flare [29] is a compiler-based optimization technique for
Apache Spark, which can generate code that processes data
directly from optimized ile formats. Although it works only

for a single-machine environment, we also wanted to com-
pare Gerenuk with it to understand performance diferences.
However, Flare’s source code is not publicly available. Based
on the results reported in [29] (e.g., from dozens to hun-
dreds of times of speedup), we speculate that Flare would
outperform Gerenuk on a single machine. However, Flare
has limited generality because it does not work at all for a
distributed environment.

4.4 Overhead of SER Aborts

With the programs we took directly from various libraries
and online forums, we did not observe any SER aborts. To
understand the impact of aborts, we found a Stack Overlow
analytics application that uses more complex data types. This
application powers a study on collaborative knowledge ex-
change over a variety of topics from socio-technical sites like
StackOverlow [60]. The application has two phases: the irst
phase constructs a database of all posts grouped by user ID
and the second phase uses NLP libraries for concept discov-
ery. In terms of program transformation, we are interested
only in the irst phase. Internally, the application uses a com-
plex user-deined type called Account, which represents a
user and her posts. All of a user’s posts are stored in a Vector.
A violation is detected in its resize method Ð when its in-
ternal array overlows, a new array needs to be created to
replace this array and this replacement involves a reference
write, prohibited by our second violation condition. Hence,
an abort instruction is inserted before writing the new array
into the vector object.
Note that several other programs in our benchmark set

also use vectors and hence aborts are inserted at similar
resizing points. However, these programs perform machine
learning tasks and their vectors contain features that do not
grow during execution. Hence, none of the executions of
these programs triggered these aborts. This new application,
on the contrary, keeps collecting posts that belong to the
same user and adding them into the vector. Hence, an abort
is triggered upon each array resizing.
Figure 10(a) reports the results of running time. Over-

all, about 10% of all Vector instances required resizing, trig-
gering aborts. With these violations and re-executions, the
Gerenuk-transformed version is 7% slower than its original
counterpart. The increase was largely due to wasted compu-
tations. We did not observe large increase in other runtime
components such as GC, serialization, and deserialization.

To further investigate the cost of aborting a SER, we man-
ually forced SERs to abort at arbitrary points during the exe-
cution of PageRank. We varied the number of aborts from 1
all the way to 20 (i.e., which is about 50% of the total number
of iterations in PageRank) and measured various aspects of
performance on the same cluster where each Spark worker
was given a 20GB heap. Figure 10(b) shows the running time
comparison. The leftmost bar represents the performance
of the original program under vanilla Spark, followed by 8
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bars showing the performance of the Gerenuk-transformed
program with 0 ś 20 re-executions.
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Figure 10. Overhead of re-executions in running time for
StackOverlow Analytics (a) and PageRank (b).

Overall, each re-execution incurs a 9% overhead compared
to a SER in the original Spark, and a 14% overhead compared
to a SER in the Gerenuk-transformed Spark. This is primarily
due to the round-trip format changing Ð each re-execution
starts with a costly deserialization process that transforms
all data in native memory into heap objects. As can be seen
in Figure 10(b), the amounts of time spent on serialization
and deserialization increase by 2× and 3×, respectively. We
also observed signiicantly increased GC efort. In the orig-
inal Spark, the GC takes about 19% of the execution time.
However, with re-executions, the heap contains orders of
magnitude more objects deserialized from the bytes, putting
severe pressure on the GC. The GC time grows to 30.3%
(with the average of 26.1%) of the execution time. The peak
memory consumption also increases by 11%, compared to
the original Spark run.

5 Related Work

Data-Parallel Systems. Numerous optimizations [9ś11, 18,
21, 22, 24ś27, 31, 37, 40, 43, 47, 53, 59, 61ś64, 66, 67, 71, 72, 74]
have been attempted from various research communities to
improve the performance of Big Data systems. Since most
Big Data systems were developed in managed languages,
recent works [30, 34, 51, 52, 56ś58] attempt to remove the
penalty incurred by the managed runtime. Skyway [56] is a
JVM-based technique that can improve the performance of
serialization/deserialization by providing support to trans-
fer objects as is. Closest to our work are the two compiler
techniques Facade [58] and Deca [50]. As discussed earlier
in ğ1, these they are both conservative transformation tech-
niques that require heavyweight code refactoring from the
user. Flare [29] also tries to transform Spark program into C
program but it is limited to only the Spark system. Gerenuk,
on the contrary, performs program transformation specu-
latively based on a transaction model, which signiicantly
improves the transformation practicality.

Niijima [70] is an optimizing compiler that automatically
consolidates C# computations on a SQL pipeline to reduce

the cost of serialization and deserialization when data is
passed from the native (.NET) to the .NET (native) run-
time. While Gerenuk is also a compiler-based approach, we
achieve soundness by inserting aborts at potential violation
points instead of transforming the whole program. Since
Gerenuk targets large Java systems, it is much more diicult
to guarantee soundness for our transformations than for
those performed by Niijima on SQL pipelines.

Compiler Optimizations and Static Analysis. Tradi-
tional optimization techniques [16, 23, 32, 33, 38, 68, 69]
for object-oriented programs use various approaches to re-
duce the number of heap objects and their management
costs. Free-Me [38] is a compiler-based technique that adds
compiler-inserted frees to a GC-based system. Pool-based
allocation proposed by Lattner et al. [44ś46] uses a context-
sensitive pointer analysis to identify objects that belong to
the logical data structure and allocate them into the same
pool to improve locality. Proliic types [65] is a static tech-
nique that splits objects into a proliic and a non-proliic
region to reduce the GC cost. However, these compiler anal-
yses are not designed for Big Data systems that exhibit strong
iterational behaviors. Object inlining [28, 49] is a technique
that statically inlines objects in a data structure into its root
to reduce the number of pointers and headers. While ob-
ject inlining ofers signiicant performance beneit, existing
inlining techniques are impractical as they give up on trans-
forming a program upon inding a violation. By contrast,
Gerenuk uses a speculative execution model that does opti-
mistic transformation while aborting speculative executions
when necessary for safety.

6 Conclusion

This paper presents Gerenuk, a compiler and runtime that
enables data-processing programs to work with the native
inlined representation of data items. The Gerenuk compiler
transforms a program speculatively based on the assumption
that user-deined types are immutable and conined. To guar-
antee safety, Gerenuk statically detects violations, at which
abort instructions are inserted. An evaluation on Hadoop
and Spark shows that our transformation can signiicantly
improve various aspects of their performance.
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