
UCLA
MIT
Texas A&M University
Ohio State University
UCLA

Chenxi Wang, Haoran Ma, Shi Liu, Yuanqi Li,
Zhenyuan Ruan,
Khanh Nguyen,
Michael D. Bond,
Ravi Netravali, Miryung Kim and Harry Xu

Semeru
A Memory-Disaggregated Managed Runtime



2

Disaggregated Datacenter

CPU Servers
small memory

Memory Servers
weak cores

Network
(e.g., InfiniBand)

Storage Servers
weak cores

• Reliable network
• Micro-second latency
• Tens of GBs bandwidth



3

Process Execution Model

Process

CPU

Memory Server

Local
Memory(cache)

RDMA over InfiniBand
Swap

Memory Server

Memory Server

Memory Server

CPU Server



4

Process Execution Model

Process

CPU

Memory Server

Local
Memory(cache)

RDMA over InfiniBand
Swap

60 ns

Memory Server

Memory Server

Memory Server

CPU Server



5

Process Execution Model

Process

CPU

Memory Server

Local
Memory(cache)

RDMA over InfiniBand
Swap

60 ns

~ 10 μs
150 Times Slower

Memory Server

Memory Server

Memory Server

CPU Server



6

Limitations of Previous Work

 Previous works focus on semantics-agnostic optimizations
• Reduce or hide the remote access latency
• Prefetch data to reduce the remote access frequency

 Cloud applications – written in managed languages
• Heap space: Reserved virtual space from OS
• Garbage Collection (GC): Automatic memory management
• Object-oriented data structures

Managed language applications often have poorer locality than native programs



7

Poor Data Locality

Object-oriented data structures
Random memory access – poor locality, hard to predict access pattern
Pointer-chasing memory access – latency sensitive

Objects
Local Cache

Memory Server
CPU Server

Swap

RDMA over InfiniBand

Reference



8

Resources Racing

GC slows down the applications
 The concurrent GC threads race resources, e.g., local cache and InfiniBand

bandwidth, with the application threads

Application
Threads

Concurrent
GC Threads

Swap

CPU Server

Local Cache

Process
Resources used by GC

InfiniBand

Remote Memory Pool

Memory Server



9

Slowdown of Spark Applications

 Both applications and GC slow down significantly on a disaggregated cluster

 GC is on the critical path
• GC increases the pause time
• GC slows down the application‘s execution

Cache Ratio Apps GC Total Time

No Swap 1.0 1.0 1.0

50% 2.0X 24.7X 8.4X

25% 5.3X 53.5X 18.9X

Cache Ratio Apps GC Total Time

No Swap 1.0 1.0 1.0

50% 1.2X 2.0X 1.4X

25% 2.0X 3.3X 2.3X

Spark GraphX TriangleCounting Spark MLlib KMeans



10

Major Insights

 Offload part of GC to memory servers where the data is located
• Good fit for weak compute on memory servers
• Near memory computing for high throughput
• GC can run concurrently and continuously

 Utilize GC to adjust the data layout for applications

Semeru – A Disaggregated Managed Runtime



11

Challenges

 #1 What memory abstraction to provide ?
• Universal Java Heap (UJH)

 #2 What to offload ?

 #3 How to efficiently swap data ?



12

Universal Java Heap (UJH)

 A normal JVM runs on the CPU server, accessing the whole Java heap



13

Universal Java Heap (UJH)

 A Lightweight-JVM (LJVM) runs on each memory server, accessing its assigned
Java heap range

 A normal JVM runs on the CPU server, accessing the whole Java heap



14

Universal Java Heap (UJH)

 A Lightweight-JVM (LJVM) runs on each memory server, accessing its assigned
Java heap range

 Each object has the same virtual address on both the CPU server and memory servers

 A normal JVM runs on the CPU server, accessing the whole Java heap



15

CPU Server Cache Management

Init
Cached-Dirty

EvictedAllocate Swap out

Cached-Clean

Free(unmap)

 Write-back policy
• Objects are allocated in CPU server memory(local cache)

• Only dirty pages are evicted to memory servers

• When a page is freed by GC, it returns to the Init state

State Machine of Virtual Page



16

Challenges

 Universal Java Heap (UJH)

 #2 What to offload ?

• Memory Server Concurrent Tracing (MSCT)

 #3 How to efficiently swap data ?



17

Disaggregated GC Overview

CPU Server

Memory Servers
MSCT

Application

 Offload tracing to memory servers
• Memory Server Concurrent Tracing (MSCT)



18

Disaggregated GC Overview

CPU Server

Memory Servers
MSCT Compaction

(Suspend app)

CSSC
(Suspend app)Application

 Offload tracing to memory servers
• Memory Server Concurrent Tracing (MSCT)

 Keep a GC phase on CPU server for memory reclamation
• CPU Server Stop-the-world Collector (CSSC)

Coordination



19

Disaggregated GC Overview

CPU Server

Memory Servers
MSCT Compaction

(Suspend app)
MSCT

CSSC
(Suspend app)Application Application

 Offload tracing to memory servers
• Memory Server Concurrent Tracing (MSCT)

 Keep a GC phase on CPU server for memory reclamation
• CPU Server Stop-the-world Collector (CSSC)

Coordination



20

MSCT – Regions to be Traced

Memory Server, LJVM#1

Evicted Region#1 Evicted Region#2 Evicted Region#3
Heap Slice for

LJVM#1

Page cached in CPU server

Page evicted to memory server



21

MSCT – Regions to be Traced

Memory Server, LJVM#1

Evicted Region#1 Evicted Region#2 Evicted Region#3
Heap Slice for

LJVM#1

Page cached in CPU server

Page evicted to memory server



22

MSCT – Regions to be Traced

Memory Server, LJVM#1

Evicted Region#1 Evicted Region#2 Evicted Region#3
Heap Slice for

LJVM#1

Generation Hypothesis:
Newly allocated objects are
more likely to die

Tracing Order : Region#2 Region#3
(age 1) (age 2)

Page cached in CPU server

Page evicted to memory server



23

MSCT – Tracing Roots

Tracing roots for each region
• References from stack variables
• References from other regions

Object #N

Memory Server, LJVM#1
Region#2

Other regions

Stack variables

Object #M

CPU Server, JVM



24

MSCT – Tracing Roots

Tracing roots for each region
• References from stack variables
• References from other regions

Object #N

Memory Server, LJVM#1
Region#2

Other regions

Stack variables

Addr_obj#N
Addr_obj#M

Object #M

Tracing Roots

CPU Server, JVM



25

CPU Server Stop-The-World Collection (CSSC)

CPU server GC is the main collection phase

• Trace the cached regions on the CPU server

• Coordinate CPU server and memory servers for space compaction

• Adjust the data layout for applications



26

Semeru Design Outline

 Universal Java Heap (UJH)

 Disaggregated GC

• Memory Server Concurrent Tracing (MSCT)

• CPU Server Stop-The-World Collection (CSSC)

 #3 How to design the swap system ?



27

Swap System Overview

Runtime

Paging

RDMA

Data Path

Control Path

CPU Server

Memory Server

Memory Server

Memory Server

Memory Server



28

Swap System Overview

Runtime

Paging

RDMA

Data Path

Control Path

Provide kernel 
information to 

runtime

CPU Server

Memory Server

Memory Server

Memory Server

Memory Server



29

Swap System Overview

Runtime

Paging

RDMA

Data Path

Control Path

Scatter/Gather

Provide kernel 
information to 

runtime

CPU Server

Memory Server

Memory Server

Memory Server

Memory Server



30

Experiment Setup
 2 CPUs per server

Intel Xeon E5-2640 v3 @2.60GHz, 8 cores

 InfiniBand
ConnectX®-3 , MT4099, 40Gb/s

 CPU Local Memory
DDR4-1866, Limit capacity by CGroup

CPU Server

Memory Server

Memory Server

Local Memory(cache) RDMA over InfiniBand

Memory Server

 3 memory servers per application

 2 cores per server
Intel Xeon E5-2640 v3

Limit number of cores
Fix CPU freq to 1.2GHz / 2.6GHz



31

Overall Performance

50% Cache Apps GC Total Time

G1-NVMe-oF 2.00X 4.44X 2.24X

G1-RAMDisk 1.82X 2.79X 1.87X

Semeru 1.06X 1.42X 1.08X

25% Cache Apps GC Total Time

G1-NVMe-oF 3.85X 14.13X 4.58X

G1-RAMDisk 3.16X 4.59X 3.23X

Semeru 1.22X 2.67X 1.32X

 Workloads
• 5 Spark applications
• 3 Flink applications

 Datasets
• Wikipedia
• KDD

 Configurations
• Baseline: No swap
• NVMe-oF
• RAMDisk



32

Memory-Server Tracing Performance
 GC Improvement

Configuration
Tracing Performance

Throughput (MB/s) Core Utilization

(Memory Server)
Single core, 1.2 GHz

418.3 29.0%

(Memory Server)
Single core, 2.6 GHz

922.2 12.4%

(CPU Server)
Single core, 2.6 GHz

93.9 N/A

 Offload tracing to memory servers increases throughput 8.8X

 Weak core is powerful enough to do continuous tracing on memory servers



33

Conclusions

 Semeru achieves superior efficiency on the disaggregated cluster via
• A co-design of the runtime and swap system

• Careful coordination of different GC tasks

 Disaggregation performance could benefit much more from a 

redesigned runtime than semantics-agnostic optimizations



Q&A

34

Thanks

wangchenxi@cs.ucla.edu


	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Overall Performance
	Slide Number 32
	Slide Number 33
	Slide Number 34

