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Abstract
Modern C++ server workloads rely on 2 MB huge pages to
improve memory system performance via higher TLB hit
rates. Huge pages have traditionally been supported at the
kernel level, but recent work has shown that user-level, huge
page-aware memory allocators can achieve higher huge page
coverage and thus performance. These memory allocators
deal with a trade-off: 1) allocate memory from the operating
system (OS) at the granularity of a huge page, achieve high
performance, but potentially waste memory due to fragmen-
tation, or 2) limit fragmentation by breaking up huge pages
into smaller 4 KB pages and returning them to the OS, but
reduce performance due to lower huge page coverage. For
example, the state-of-the-art TCMalloc allocator handles this
trade-off by releasing memory to the OS at a configurable
release rate, breaking up huge pages as necessary.
This approach balances performance and fragmentation

well for machines running one workload. For multiple appli-
cations on the same machine however, the reduction in mem-
ory usage is only useful to overall performance if another
workload uses this memory. In warehouse-scale computers,
when an application releases and then reacquires the same
amount or more memory quickly, but no other application
uses the memory in the meantime, the release causes poorer
huge page coverage without any system-wide benefit.

We introduce a metric, realized fragmentation, to capture
this effect. We then present an adaptive release policy that
dynamically determines when to break up huge pages and
return them to the OS to optimize system-wide performance.
We built this policy into TCMalloc and deployed it fleet-wide
in our data centers, leading to an estimated 1% fleet-wide
throughput improvement at negligible memory overhead.
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1 Introduction
Modern C++ server workloads rely on 2 MB huge pages
for performance. Workloads with large heap sizes put sig-
nificant pressure on the translation lookaside buffer (TLB),
causing the CPU to spend a substantial fraction of its cycles
traversing the page table, especially when using traditional
4 KB pages. The speed-up from using 2 MB pages has been
reported to be as high as 53% for realistic workloads [13].
Modern operating systems transparently support huge

pages and recent research improves huge page mechanisms
at the kernel-level [13, 15, 16]. A less explored problem is that
for user-level applications to use these huge pages effectively,
they need to manage memory at huge page-granularity as
well. Past work shows that to make maximum use of huge
pages, the user-level allocator needs to cooperate by allocat-
ing memory in chunks of 2 MB from the OS [10, 14].
This approach leads to a new fragmentation problem for

non-moving memory managers [14], since the probability
that a given 2 MB page frees up completely and can be re-
turned to the OS is much smaller than the probability that a 4
KB page can be returned. Allocators therefore have to decide
between keeping a 2 MB page fully allocated to the applica-
tion, at the cost of incurring memory overheads in the form
of fragmentation, or to break this page up and return a subset
of its constituent 4 KB pages back to the OS, a process known
as subrelease. The latter incurs performance overheads due
to decreased huge page coverage, while the former incurs
memory overheads from fragmentation. Previous work has
shown that only using huge pages without subrelease can
increase physical memory size by 23-69% [13].
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Huge page-aware memory allocators such as TCMalloc
handle this choice as part of their memory release policy: A
configurable release rate tells the allocator how many MBs
per unit time it should return to the OS, and the allocator will
break up huge pages with free 4 KB sub-pages as necessary
to meet this rate. While this policy is suitable for an individ-
ual application or benchmark in isolation, server workloads
often share a machine with many other applications, which
are assigned by a cluster scheduler that dynamically allocates
resources such as cores or memory between them. We find
that the above release policy is suboptimal in this setting.

Cluster schedulers take a certain amount of time to sched-
ule a job. For the purpose of this paper, we call this time in-
terval 𝑇𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒 . The specific value varies; for example, prior
work by Verma et al. implies that it is on the order of min-
utes [21]. This delay means that if resources are returned to
the OS for less than 𝑇𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒 and then again requested, they
cannot actually be used by any other workload.
This OS reuse policy leads to a subtle interaction with

the application-level memory allocator. When the memory
allocator returns memory immediately based on its release
rate, it may return memory that the application needs again
quickly. This introduces significant overheads from several
sources: 1) additional syscalls and page faults to return and
re-allocate memory to and from the OS, and 2) unnecessarily
breaking up huge pages, thus reducing huge page cover-
age (the fraction of memory covered by huge pages), which
reduces the overall application throughput.

Importantly, these are problems that are not visible when
evaluating an allocator on benchmarks or on a single appli-
cation – these problems only manifest through the interac-
tion between memory manager, OS, and cluster scheduler in
datacenter deployments, and can account for performance
overheads of 3-5% (or more) for some workloads. We make
several contributions to quantify and address this problem:

• We identify a source of inefficiency in C++ memory
allocators that arises from the fact that current mem-
ory allocator policies do not take cluster scheduling
delays into account.

• We show that this effect can lead to misleading frag-
mentation measurements and introduce a new metric,
realized fragmentation, to capture long-lived free mem-
ory that can be returned to the OS. This metric there-
fore enables making better system-wide fragmentation
and performance trade-offs.

• We introduce an algorithm and implement it in TCMal-
loc that exploits these insights to significantly improve
huge page coverage and thus performance.

• We present a thorough evaluation of our algorithm in
warehouse-scale datacenter deployments and demon-
strate a 1% performance improvement across a global
fleet of C++ servers, with speed-ups of 5% for some
important workloads that rely on huge pages.

Our approach has been deployed fleet-wide in Google’s data-
centers.While a 1% savingmay seem small, these savings rep-
resent realized end-to-end improvements across all servers
in a heavily optimized global fleet and observed in a real
production deployment, not an experimental setting. This in-
cludes servers that do not benefit from the optimization (e.g.,
because they don’t release memory). We therefore demon-
strate with high confidence that our technique is effective
across a wide range of server workloads.
Section 2 introduces background about huge pages and

memory management. In Section 3, we show that existing
metrics used to present fragmentation can be misleading and
propose a better metric to measure fragmentation in memory
allocators. Section 4 then introduces our adaptive huge page
release technique, while Section 4.1 presents implementation
details. We then evaluate our technique using measurements
from a hyperscale production deployment (Section 5), fol-
lowed by related work (Section 6) and conclusions (Section 7).
Our implementation is available open-source in TCMalloc.

2 Background
We now introduce background material on huge page man-
agement, TCMalloc, and cluster scheduling. We also describe
interactions between the operating system, the user-level
memory allocator, and the cluster scheduler.

2.1 Huge-Page Management
Huge pages are crucial for efficient execution of workloads
with large memory footprints [13–16]. Traditionally, huge
pages were supported at the kernel level through transpar-
ent huge-page support (THP), which describes techniques
where user-level applications do not need to be aware of the
underlying page size, can request memory from the OS at
any granularity, and the OS then automatically determines
how to rearrange/compact these pages to maximize huge
page coverage (which is the fraction of used memory that is
backed by huge pages).

While there has been a large amount of work on improv-
ing transparent huge page support [13, 15, 16], there are sev-
eral fundamental challenges of this approach. First, achiev-
ing high huge page coverage without assistance from the
application-level memory allocator is challenging: Since the
kernel can only relocate memory at a base page granularity,
efficiently packing memory at the kernel level does not auto-
matically translate into larger huge page coverage, because
contiguous base pages in physical memory also have to be
contiguous in virtual memory in order to be backed by huge
pages (otherwise, the pages still need to be backed using base
pages). Further, not all pages allocated at the kernel level
are movable, and unmovable pages can lead to fragmenta-
tion that reduces the availability of 2 MB pages [16]. Finally,
compaction is not free and can incur substantial cost from
memory copying overheads.
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Page Heap

void* A = new SmallObject();
void* B = new char[1024*1024];

Per-CPU Cache

Central Free List

Huge page (only 6 out of 256 blocks shown)

Per-CPU CachePer-CPU Cache

Subreleased memory on
a broken huge page

Free memory on an 
unbroken huge page

Figure 1. High-level overview of TCMalloc’s allocation
paths. The huge page-aware page heap manages memory
at the granularity of 2 MB pages divided into 8 KB blocks.
These pages can be broken up to subrelease portions of them
back to the operating system.

For these reasons, transparent huge page mechanisms at
the kernel level can further improve huge page coverage with
assistance from the user-level application. If the user-level
application allocates pages atmultiples of 2MB, these regions
can be trivially backed by huge pages at the kernel level
without creating fragmentation that reduces the availability
of 2 MB pages. This requirement to support huge pages at the
application-level is increasingly being recognized by modern
memory allocators [10, 12, 14].

2.2 TCMalloc
Throughout this paper, we will use the huge page-aware
allocator [10] in TCMalloc [8] to describe our techniques.
We note that the techniques described here are not limited
to TCMalloc specifically but apply to any memory allocator
that manages memory at the granularity of huge pages and
has the ability to break up huge pages as necessary.
Like most allocators, TCMalloc consists of two parts: A

small-object allocator that is based on thread and CPU-local
caches and serves allocations from a fixed set of size classes
through free lists, and a page heap allocator that serves large
allocations and backs the memory used by the small-object
allocator. TCMalloc provides two implementations of the
page heap: a legacy version that is not huge page-aware
and a huge page-aware page heap that manages memory
at the granularity of 2 MB ranges, thus enabling the OS to
back these ranges with huge pages. The details of the huge
page-aware allocator are described in [10].
At a high level, each 2 MB range managed by the huge

page-aware allocator is logically subdivided into 8 KB blocks.
The page heap keeps track of them in a bitmap and each block
is either marked as “used” (e.g., to back free lists for small
objects or large objects directly) or free. When a huge page
is entirely free, it can be fully returned to the OS. However,
if the huge page is partially free, the allocator can choose
to leave the entire huge page allocated or “break it up” and
return a subset of its constituent free pages back to the OS,
a process called subrelease in TCMalloc (Figure 1).

Figure 2. Memory consumption of a Redis server workload
over time (running against synthetic requests). A substantial
amount of live memory is in pages that are partially full and
therefore either have to be broken up or retained.

To serve large allocations, TCMalloc tries to binpack them
into the existing huge pages, in order to minimize fragmen-
tation. Huge pages that are entirely free are put into a cache
and can be released when the allocator is asked to free mem-
ory (e.g., to satisfy a statically configured release rate or an
explicit memory release request). If there are not enough
fully free huge pages in the cache, then the allocator will
break and subrelease partially full huge pages.
Many workloads – including server workloads in data

centers – have highly varying memory footprints, which in
turn leads to a large fraction of partially full huge pages [14].
Partially full pages are often the result of containing one or
more objects that are longer-lived than the rest of the objects
on that page. The probability that a given page contains a
long-lived object increases with the page size. After running
for a sufficiently long time, there is a high probability that
most huge pages contain at least one long-lived object. When
the memory footprint decreases, all of these pages will be
partially full and cannot be released without breaking them
up. Figure 2 shows this empirically for a Redis workload: a
large fraction of allocated memory is on partially full huge
pages. For this memory, the allocator has to make a choice
whether to retain the memory and incur fragmentation, or
whether to return it to the OS, breaking up huge pages and
thus reducing huge page coverage. Figure 3 demonstrates this
trade-off by looking at the memory from one of TCMalloc’s
microbenchmarks that mimics real allocation patterns.

2.3 Cluster Scheduling
Machines in data centers are usually shared between sev-
eral workloads (jobs), and a cluster scheduler is responsible
for assigning jobs to machines. There are many published
examples of cluster job schedulers deployed in large-scale
production data centers, as well as a large body of academic
research (e.g., [3, 9, 19, 21]).

One fundamental property these schedulers share is that
they have to binpack jobs onto available machines. When a
job arrives at the cluster scheduler, a coordination service
determines machines that have enough spare capacity to
schedule the job into (e.g., memory, CPU cores, or GPUs).
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(a) Low release rate

(b) High release rate

Figure 3. Demonstrating TCMalloc’s trade-off between frag-
mentation and huge page coverage (numbers exclude full
huge page allocations). (a) has a low release rate and high
huge page coverage, but wastes memory to fragmentation.
(b) has a high release rate and wastes less memory, but does
so at the cost of breaking up huge pages.

Fluctuations in resource usages induce a fundamental delay
in how quickly spare resources can be reused. Resources
need to be free for long enough that the cluster scheduler
can develop high confidence that these resources will actu-
ally remain available to the scheduler and not be needed by
another job on the machine. When the scheduler identifies
that there is a margin of available resources available on this
machine, and once a suitable job arrives to schedule into
this gap, it will be assigned to the machine. In practice, these
steps cause several minutes delay between the time resources
are freed and the time they are reused for a new job. In our
cluster environment using Google’s Borg scheduler [21], we
empirically assume this interval to be 5 minutes.
Due to this delay, resources that are returned to the OS

by a job are not actually available to the cluster scheduler
unless they remain free for at least a particular time interval.
We call this interval 𝑇𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒 .

3 A Better Metric for Fragmentation
The goal of reporting fragmentation is to quantify the amount
of memory assigned to the application but that is not actually
used. This value is then used to trade off memory overheads
and application performance. For example, increasing the
release rate lowers fragmentation while incurring additional
overheads from breaking up huge pages and interacting with
the OS to acquire and release memory.

Figure 4. Reporting the current free memory leads to a re-
ported average fragmentation of 250 MB. In practice, how-
ever, none of this fragmented memory could actually be used
otherwise if the timescale is short.

There are several definitions of fragmentation. For exam-
ple, Hoard [1] defines fragmentation as the ratio between the
maximum amount of memory allocated from the OS and the
maximum amount of memory required by the application.
Such a metric is appropriate when running a single applica-
tion in isolation, but does not apply in a setting of multiple
long-running server workloads with time-varying demands.
A more common metric is therefore average fragmentation,
which takes time variations into account by periodically sam-
pling the memory-in-use and mapped-memory statistics of
the memory allocator, and reporting this ratio of used to
mapped memory averaged over a time series.

3.1 Shortcomings of Average Fragmentation
Average fragmentation can be a misleading metric. Consider
the example in Figure 4, which shows a workload with 1 GB
of mapped memory and whose memory usage is fluctuating
between 500 MB and 1 GB. If fragmentation is measured by
periodically sampling this workload and reporting the aver-
age, the reported free memory from average fragmentation
will be 250 MB. However, if the fluctuations between peak
and trough are very short (e.g., if the unit of the x axis is in
milliseconds), these 250 MB don’t actually capture memory
that is wasted in a sense that it could be more effectively used
otherwise. Even if some of this memory could be returned
to the OS, it would immediately be needed again.
At the same time, if the metric on the x axis was in days,

250MB would clearly be an adequate metric to measure
the fragmentation, since the memory footprint is changing
slowly enough that it is effective to return memory to the
OS at any given time and bring it back when it is required
again. It is therefore clear that average fragmentation is not
the best way to measure fragmentation for the purposes of
trading performance vs. memory usage. In our data center
deployments, we previously used average fragmentation to
determine how much memory we were wasting at any given
time. However, we found that much of the fragmentation we
were capturing this way was actually of the short-lived kind
that could not have been used otherwise. We therefore need
a better metric to measure fragmentation.
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Figure 5. Average fragmentation vs. realized fragmentation,
demonstrated on a synthetic memory allocation trace with
𝑇𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒 = 1 minute. The top two graphs show in-use mem-
ory in gray. The top graph shows average fragmentation in
red and the middle shows in green realized fragmentation,
i.e., how much of the red above fragmentation persists for
over 1 minute. The bottom graph presents the two metrics
together. Realized fragmentation is much lower than average
fragmentation, as expected.

3.2 Realized Fragmentation as a Better Metric
We define realized fragmentation to be the maximum amount
ofmemory that is free and, if returned to theOS, would not be
requested back within less than𝑇𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒 . As such, this metric
captures unused memory that, if it were released, could be
productively reused by another workload. In contrast to
average fragmentation, realized fragmentation cannot be
computed from the current state of the allocator alone but
requires a time series of previous activity.
Given a time series with a length of at least 𝑇𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒 , re-

alized fragmentation can be calculated in closed form. For
every point in the time series, we compute the amount of
memory that is both mapped (i.e., allocated to the applica-
tion) and free. Realized fragmentation is then the minimum
of this value over the past 𝑇𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒 interval. (This is equiva-
lent to the previous definition: Since the memory is free for
the entire 𝑇𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒 interval, it would not be requested back
within less than 𝑇𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒 if returned to the OS. Meanwhile,
we could not return more memory without requesting it
back within less than 𝑇𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒 , since we are looking at the
minimum across the time series. It is therefore the maximum
amount of such memory.)
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Figure 6. Data structure holding the time series data for
tracking realized fragmentation. Time intervals are tracked
in a circular buffer and for every interval, we store the sta-
tistics at all possible inflection points. This captures all local
peaks and troughs.

3.3 Tracking Realized Fragmentation
Figure 5 shows the difference between the two metrics vi-
sually. While average fragmentation is large, realized frag-
mentation is a much smaller amount, showing what may
actually be returned to the OS and potentially used by other
applications. Realized fragmentation thus more accurately
represents wasted memory at the system-wide level.
Recording realized fragmentation requires new function-

ality in the memory allocator to capture a time series of
memory use over the last 𝑇𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒 interval. While it might
seem intuitive that we would only need to capture the last
peak, it turns out that this is not sufficient – the reason is
that if we only keep track of one peak, as soon as that peak
moves out of the 𝑇𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒 time interval, we would not know
where the next-largest peak is in the time series history. We
therefore need a way to not only capture the time series
of the last 𝑇𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒 interval, but also do so in a way that
accurately captures the inflection points and does not affect
performance of the memory allocator.
We achieve this goal by dividing the time series into 1s

epochs. We do not update the time series on every allocation
but only on those that cause changes to the page heap portion
of the allocator (see Section 2.2). Within the allocator, we first
check whether we need to advance the time series (which
can be done with a quick timestamp counter read) and then
record the maximum and minimum used/free memory for
the current epoch, which gives us the inflection points, as
depicted in Figure 6. Note that all of these operations take
constant time and overheads are therefore bounded.
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Figure 7. Fleet-wide distribution of fragmentation for a sin-
gle day, measured by realized fragmentation (𝑇𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒 = 5
minutes) and average fragmentation. The y-axis normalizes
to workload samples (not memory weighted). The average
metric significantly over-reports fragmentation. While close
to 85% of workloads have non-zero average fragmentation,
almost 90% of workloads actually do not have any fragmen-
tation that could be reused.

When TCMalloc metrics are queried, we go through the
time series and look up the minimum free, mapped memory
across all epochs – which we then report as the overall frag-
mentation for the workload. The metric is available upstream
in open-source TCMalloc [8], listed in the “time series
over 5 min interval” section of TCMalloc’s statistics (in
addition to other metrics derived from the time series).

3.4 Realized Fragmentation in Production
In our production deployment, we have a continuous mon-
itoring system that regularly queries TCMalloc’s various
metrics across all workloads in the fleet [18], which allows
us to collect realized fragmentation and other metrics fleet-
wide. We configured 𝑇𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒 = 5 minutes in our fleet wide
metrics, which works well with other scheduling and report-
ing intervals in our fleet.

Figure 7 shows the cumulative distribution function (CDF)
of both metrics for one day in the fleet. The realized fragmen-
tation metric was zero for 90% of workloads in our deploy-
ment, whereas average fragmentation was zero for 15% of
workloads using TCMalloc with huge pages and subrelease.
These results revealed that TCMalloc was too aggressively
releasing memory. We hypothesize that this is because engi-
neering teams configure workloads based on the telemetry
that they have and the existing telemetry suggested that
there was a lot of fragmentation, implying that the release
rate should be set higher to reduce this fragmentation. How-
ever, releasing this memory did not lead to any memory
savings that could be reclaimed by the cluster scheduler.
Furthermore, it reduced huge page coverage and induced
system call overhead, causing applications to run slower than
they would have with a lower release rate. With the high
release-rate configuration, fleet-wide TCMalloc-level huge

page coverage was at only 58%, indicating significant mem-
ory on broken huge pages (note that here and throughout,
we exclude parts of the heap not managed by TCMalloc’s
filler [10], such as large allocations that are a multiple of 2
MB). We therefore set out to address this problem.

4 Adaptive Huge Page Release
While releasing memory back to the OS is an inherently dy-
namic problem, current memory allocators treat it as mostly
static. Typically, there is a statically configured rate that de-
termines how quickly free pages should be returned to the
operating system (e.g., “release X free pages per second”).
In addition, many allocators include a mechanism for an
application to explicitly request freeing memory.

For example, jemalloc has a decay rate [5] that determines
how rapidly pages are returned to the OS. In contrast, ptmal-
loc in glibc [7] allows setting a “trim” threshold to determine
at how much free memory the allocator starts returning
pages back to the OS. Finally, TCMalloc [8] has a static re-
lease rate that indicates the amount of free memory to return
to the OS per unit time, if this memory is available. This rate
is 1 MB/s per default. When used with huge pages, TCMalloc
has an additional optimization that delays returning an en-
tirely free huge page to the OS: It first places it into a cache,
to allow the application time to use it and maintain this huge
page. When returning memory to the OS, TCMalloc prefers
to first release memory from this huge page cache before
starting to break up partially free huge pages.

One of the shortcomings of these approaches is that they
do not take into account when the memory that they are
releasing will be needed again. These policies thus lead to
the allocator releasing memory and then quickly requesting
memory again from the OS. TCMalloc’s huge page cache and
jemalloc’s decay rate try to partially address this problem
for entirely free pages by allowing the allocator to buffer
these pages for a period of time before returning them, but
neither of these strategies can make good decisions when the
trade-off is whether or not to break up a huge page. Without
huge pages, returning and reacquiring memory has a fixed
cost that only affects the operation itself. Breaking up a huge
page, however, has performance implications for all future
allocations and program TLB performance. Furthermore,
neither policy is optimized for the scenario where the cluster
scheduler cannot reuse memory unless it has been free for a
particular amount of time.

Instead of using a static release rate, we therefore change
the allocator to dynamically decide how much memory to
release, based on predicted future demand.Wemake a simple
assumption: We predict future from past memory demand
by predicting that memory that has been used within the
last time interval Δ will be used again within the next time
interval Δ. This use of historical memory usage together
with a statically or dynamically configured release rate leads
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Figure 8. The adaptive subrelease policy and how our mech-
anism determines correctness after another interval Δ.

to the following adaptive release policy (which is triggered
every time the memory allocator tries to release memory to
meet its release rate):

1. Assuming there is sufficient free memory to satisfy a
release request of X MB, we handle as much of this
request as possible using unbroken free huge pages in
the huge page cache. Let 𝑅 equal any remainder, which
requires breaking up huge pages.

2. We limit the actual release amount (𝑅𝐴) as follows.
Let 𝑀𝐴𝑋 equal the largest amount of used memory
in the last interval Δ. We compute 𝐷 as the difference
between 𝑀𝐴𝑋 and the currently mapped amount of
memory. If 𝐷 ≥ 𝑅, 𝑅𝐴 = 𝑅. Otherwise (𝐷 < 𝑅), we
release less than requested: 𝑅𝐴 = max(𝐷, 0).

3. We then break up huge pages and subrelease any free
constituent 4 KB pages until the amount totals to 𝑅𝐴.
The order in which to break up huge pages follows the
allocator’s existing heuristics.

Figure 8 visualizes this policy. While this policy still acts on
a static parameter (i.e., the MB/s release rate parameter), it
takes dynamic actions that depend on the state of the heap
and the recent peak memory usage. The overall effect of this
policy is that the amount of mapped (i.e., allocated to the
application) memory never drops below the largest usage
peak in the recent past. Over time, it will still return memory
to the cluster scheduler, but at a rate such that the cluster
scheduler is able to take advantage of the free memory and
assign it to other applications, because this application is
much less likely to need this memory immediately. We do
not apply this policy to release requests due to reaching a
memory limit, to avoid introducing out-of-memory errors.

4.1 Implementation
We implemented the release policy described in the previous
section in TCMalloc by piggybacking on the fragmentation,
in-use, and other memory metrics that it already gathers.
Specifically, build on the time series data from Section 3.
Adaptive huge-page subrelease is enabled and configured by
setting a non-zero time interval Δ1. The allocator is thus still
1This parameter is called tcmalloc_skip_subrelease_interval in up-
stream TCMalloc and can be configured using the MallocExtension inter-
face (setting it to 0 disables the mechanism).

configured using a static release rate, but when the allocator
releases memory due to a periodic release event (not through
a user request), then the amount of memory to release is
adjusted such that the allocated (mapped) memory never
drops below the highest usage point within the last time
interval Δ. The implementation examines the time series
data (Section 3) and finds the largest usage at any given
point in time. Since the largest usage amount is an inflection
point, it is part of the time series.

Throughout the remainder of the paper, we examine heap
usage history over the past 60 seconds (by setting Δ = 60 s).
We use a default release rate of 1 MB/s in most of our exper-
iments (10 MB/s in some of them).

4.2 Accuracy Metric
An important question is how often these subrelease de-
cisions were correct. One specific concern when initially
deploying adaptive huge-page subrelease was whether users
would see their average fragmentation increase and believe
that they are seeing a regression. To preempt this prob-
lem, we added a mechanism to compute how many of the
skipped release decisions were correct, i.e., were indeed
quickly needed again within the interval Δ.
This check can only be performed another time period

Δ later, when we know whether or not a subsequent peak
usage exceeded the target amount of used memory. Note that
the mechanism can be partially right. For example, assume a
workload with current usage of 500 MB, a recent peak usage
of 1 GB, and mapped memory of 2 GB (i.e., 1.5 GB is currently
free but mapped). Given a release request for 1.5 GB, our
policy only releases 1 GB because of the recent 1 GB peak,
even though in theory it could release up to 1.5 GB. If there
is another 1 GB peak within the next interval Δ, this was the
correct decision. However, if the next peak is only 750 MB,
there are 250 MB that were incorrectly not released.

To track accuracy, we introduce a second time series tracker.
When we forego releasing memory, we increment a per-
epoch counter to keep track of how much memory we did
not release due to a recent peak. Then, whenever we reach
the end of an epoch in the future and there are pending sub-
release decisions that were not confirmed yet, we go through
the last interval Δ of the time tracker to check whether there
were any skipped subreleases that are below the peak asso-
ciated with the current epoch. If so, we can mark these as
correct (note that we need to be careful not to double-count
them in the future; in practice, this means that when going
through the time series, we need to look at previous peaks
and ignore anything below them). If a subrelease decision
makes it to the end of the tracked range of the time series and
has not been marked as correct, we can count it as incorrect.
Figure 8 visualizes this approach (shown in gray).

We found the correctness tracking feature helpful for two
reasons. 1) It helped us determine that the algorithm behaved
as expected in the fleet, and 2) We used it to calibrate the
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(a) Huge page coverage over time

(b) Average Fragmentation over time

Figure 9. Redis key-value store with and without adaptive
subrelease. In figure (a), we see that huge page coverage
improves substantially with the adaptive release policy. In
(b), we see that the average fragmentation is slightly increas-
ing. However, the residual fragmentation in both cases is 0
throughout the entire execution of the workload.

time interval Δ. The larger the Δ value, the more likely we
are going to falsely hold on to too muchmemory. The shorter
the Δ value, the more likely we are to falsely release it. By
tracking the correctness, we can find a value for Δ that maxi-
mizes the amount of correct decisions. While this parameter
could be tuned for every workload, we found Δ = 60 s to be
a suitable parameter that worked reasonably well for most
of the applications we looked at.

5 Evaluation
We now evaluate the effectiveness of our adaptive subrelease
policy. We do so through a combination of experiments and
real-world workloads deployed in the fleet. Our implemen-
tation is available in upstream TCMalloc [8].

5.1 Redis Workload
To evaluate how well our technique improves huge page
coverage, we ran a Redis workload with and without the
adaptive subrelease policy. We use the benchmark program
that is part of Redis and configured it to run batches of 200K
requests, with 1K parallel connections and 1K byte entries.

We first pre-populate the Redis database with 200K such
entries. We then run 10 iterations of adding 200K entries,
waiting for 5 seconds, and then removing them again – em-
ulating variation in demand. We ran with a 10 MB/s release
rate and a 60s adaptive subrelease interval Δ. For reporting
realized fragmentation, we use 𝑇𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒 = 5min.
The adaptive release policy significantly improves huge

page coverage (Figure 9a). With adaptive subrelease, the
average huge page coverage is 91% vs. 73% without. With-
out adaptive subrelease, huge page coverage declines down-
wards over time. Note that while the average fragmentation
increases slightly (Figure 9b), the realized fragmentation
remains unchanged (0 in both cases).

5.2 Proprietary Workloads
We ran A/B experiments with a number of proprietary work-
loads in our fleet. By comparing the results of the system
with and without adaptive huge page subrelease, we demon-
strate the impact of the mechanism.

Web server. This workload serves queries for a large-scale
web service. To compute the impact of adaptive huge page
subrelease, we compared two different runs of an integration
test of this service, one with adaptive huge page subrelease
(Δ = 10min) and one without. Both used a 10 MB/s memory
release rate and we ran both of them for ≈15 hours. Without
adaptive huge page release, we observed a drop in huge page
coverage to 87% (continually dropping) while huge page cov-
erage remained at 98% with adaptive huge page subrelease.
The effect was a 0.9% improvement in server throughput
as measured in QPS. 60% of skip subrelease decisions were
correct according to our measurements.

Storage service. We ran a test deployment of the adaptive
huge page mechanism with a storage service backend. When
deploying the mechanism, we observed a drop of about 50%
in minor page faults – a meaningful reduction of cycles in its
own right. We also observed that the number of huge pages
that were broken up reduced by about 90% relative to the
baseline without adaptive huge page subrelease.

Data analytics framework. We ran an A/B experiment
with a large-scale data analytics framework. By deploying
adaptive huge page subrelease to 50% of the services, those
services saw a reduction in CPU cycles of 4-5%, as well as a
15%+ latency reduction at the 99%ile. Huge page coverage im-
proved by 3.12×, which goes hand-in-hand with a reduction
of broken huge pages by 4.5×.

These experiments demonstrated that the technique not only
improved low-level metrics such as huge page coverage but
also that it led to significant improvements in application
throughput. Note that all of these workloads are highly tuned
production services and that 1% improvement in either is a
large improvement in these globally deployed services.
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Table 1. Summary of our fleet-wide evaluation results
(latecy-sensitive and latency-tolerant refers to workload type).

Metric Control Experiment
Application Throughput (latency-sensitive) 100% 100.77±0.03%
Application Throughput (latency-tolerant) 100% 101.44±0.03%
Cycles in DTLB load misses 11.71% 11.39%
Cycles in minor page faults 3.56% 3.39%
Huge page coverage 58% 72%
Number of hugepages broken (normalized) 100% 60%
Realized fragmentation (normalized) 100% 100.08%

5.3 Fleet-Wide Evaluation
Following our initial evaluation, we rolled out the service
fleet-wide and ran a large scale experiment where a small
fraction of all servers in the fleet enabled the newmechanism
and were then compared to a carefully chosen control group
with the same workload mix and other workload properties.
Application throughput is measured through end-to-end
metrics such as QPS or CPU time, depending on theworkload.
Table 1 shows that adaptive huge page subrelease improves
overall application throughput by 0.77% for latency-sensitive
workloads and 1.44% for latency-tolerant workloads, over
1% in total. Note that these improvements are over a highly
optimized baseline, and some workloads have already fine-
tuned TCMalloc’s release rate for their application.

These improvements go hand-in-hand with improvements
in low-level metrics. Huge page coverage improves dramati-
cally and the number of huge pages broken since the start
of execution drops by a significant amount. Note that real-
ized fragmentation does slightly increase. This is by design
– we allow the application to hold on to more memory to
avoid breaking up huge pages. However, the intention is that
most of this memory is backed for less than 5 minutes, since
such memory cannot be reused. Using our new telemetry,
we see a 0.08% increase in memory consumption (within the
noise). However, this measurement ignores any workload
that has subrelease disabled, a small but not negligible set
(the throughput numbers are fleet-wide). As such, we believe
these memory overheads to be negligible.

5.4 Accuracy of Subrelease Decisions
We wanted to understand how often the mechanism makes
the correct decision. To this end, we collected the fraction of
correctly released pages across an entire day and found that
a high fraction of these decisions was retroactively deemed
correct (Figure 10).

5.5 Sensitivity to Configuration Parameters
Finally, we want to understand how setting the configura-
tion parameters of the mechanism affects its performance.
Adaptive huge page subrelease is affected by two parameters:
TCMalloc’s release rate and Δ.

Figure 10. Fraction of correct release decisions across a ran-
dom sample of workloads from one day in the fleet. We can
see that decisions are mostly correct. Note that applications
that never subrelease are always correct, which is part of the
reason for the spike at 100%.

To measure the effect of these parameters, we created a
small microbenchmark that varies memory usage over time
by emulating arbitrarily chosen spikes of memory usage of
varying size and lifetime. We ran this benchmark with a
range of different values for the two parameters. The results
are shown in Figure 11. We observe the following:

• As expected, a release rate of 0 results in no subre-
lease and hence perfect huge page coverage. However,
this comes at the cost of increased fragmentation (in-
cluding realized fragmentation). Note that a “correct
subrelease fraction” of 0 in this case simply means that
there were no subrelease decisions made.

• Similarly, if Δ is 0 (i.e., adaptive huge page release is
disabled), no subrelease decisions are made and higher
release rates lead to lower huge page coverage.

• Increasing the release rate decreases both fragmen-
tation and huge page coverage. It also leads to more
subreleases being skipped, which is expected since
there are more candidates for skipping.

• Increasing Δ results in more subreleases being skipped
but also in a higher fraction of correct subrelease deci-
sions. The reason is that our correctness checks only
capture false positives, not false negatives.

• High huge page coverage and low fragmentation are
often mutually exclusive. The design points that have
high huge page coverage are those with large fragmen-
tation and vice-versa.

These numbers show that both release rate and Δ have an
impact on the overall huge page coverage. It is therefore
necessary to tune both of them together. By looking at both
the heatmaps for huge page coverage and realized fragmen-
tation, we can pick a design point that achieves an acceptable
trade-off between the two.
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Figure 11. Varying both the memory release rate and the Δ
interval. When Δ = 0, adaptive huge page release is disabled.
When the memory release rate is 0, no pages are subreleased.
All memory amounts are in MB.

6 Related Work
Fragmentation in C/C++ non-moving memory allocators has
seen a significant amount of work over the years. While the
fragmentation problem is considered mostly solved with con-
ventional 4 KB pages [1, 11], managing user-level memory
at the granularity of huge pages has been shown to intro-
duce new fragmentation problems [14]. One recent memory
allocator, LLAMA [14], addresses this problem by predicting
object lifetimes using a machine learning model and using
these lifetimes to ensure that huge pages become empty at
similar points in time. This approach requires a trained life-
time model and a new hierarchical region memory allocator,
which differs substantially from the free-lists implemented
in most other explicit memory allocators. Another solution,
Mesh [17], combats fragmentation through compaction, by
mapping multiple pages on top of each other. However, this
approach requires a new randomized allocation approach.
In contrast, our approach is non-invasive and can easily be
integrated into existing free-list allocators.

Our approach has similarities to recent work on huge page
management at the OS level. For example, Ingens [13] pro-
poses to treat huge page availability as a first-class resource
that it aims to preserve – this is similar to how our approach
treats huge pages at the user level. In contrast to our work,
however, kernel-level work often focuses on improving com-
paction techniques [15, 16], an option that we do not have
in a non-moving application-side allocator.

Garbage collection algorithms that move objects, such as
those that are commonly used in Java Virtual Machines, face
similar fragmentation problems, but they can move objects.
They thus copy objects to limit the kind of fragmentation that
requires subrelease in a non-moving environment. Examples
of algorithms that successfully minimize fragmentation in-
clude Immix [2], G1 [4], C4 [20], ZGC, and Shenandoah [6].
As far as we are aware however, the integration and impact
of huge pages on these approaches has not been closely ex-
amined. While moving objects is another way to sidestep
the problem we are solving in this paper, this solution is not
viable in a C++ environment since objects are non-movable.

7 Conclusion
We demonstrated that the fragmentation in warehouse-scale
computers should not only take into account the average
or maximum free memory in an individual workload but in-
stead consider whether thememory returned to the OS is free
for long enough that it could be reused by other workloads.
We introduced realized fragmentation, a new fragmentation
metric that accounts for this effect, and demonstrated that
using average fragmentation, which is standard, significantly
overestimates fragmentation. We then demonstrated a tech-
nique to adaptively handle huge page subrelease decisions,
leading to over 1% throughput improvement in fleet-wide
deployment, in production data centers.
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