
Gerenuk: Thin Computation over
Big Native Data Using Speculative
Program Transformation

Cheng Cai*Christian Navasca* Khanh Nguyen*

Shan Lu‡Brian Demsky† Miryung Kim* Harry Xu*

†* ‡

BY-SA 4.0 1.0.0October 30, 2019

Previous Approaches Focus on One Aspect of Overhead

Skyway (Serialization and Deserialization)
1.4x speedup
77% more network traffic

Yak (GC)
1.7x speedup
12% increased memory usage

1

Tungsten Processes Native Bytes, But is Limited

Instead of processing Objects, process bytes
• Removes object overhead, greatly improves performance

However, Tungsten is not general
• Only for simple data types
• Adds overhead to certain applications

Can we find a scalable, general solution?

2

Our Solution: Gerenuk

We ran on 12 applications across two frameworks:
Improved performance by 1.6x
Reduced memory usage by 26%

Source Code Annotations

Gerenuk Compiler

Executable

Speculatively transform source

Gerenuk Runtime

3

Developers Write Data Processing Applications

Data
ProcessingDeserialization Serialization

map, reduce, etc.

Input from
Worker A

Input from
Worker B

Output to
Worker X

Output to
Worker Y

4

Goal: Remove Objects Through byte inlining

Process inlined bytes instead of objects.

Header Payload

foo { String s; int i; }

PayloadHeader

Payload Payload

5

The Gerenuk Compiler Replaces Objects With Addresses

Header 3

foo { String s; int i; }

“Gerenuk”Header

“Gerenuk”Buffer 3

String s = foo.s
foo.i = 10

s = readNative(Buffer + 0, 7)
writeNative(Buffer + 7, 4, 10)

6

Byte Inlining Relies on Confinement

foo bar

Escaping references are not allowed:

v = foo.s
bar = new Baz()
bar.g = v /* foo.s escapes through bar, violation */

In this work, an object we can’t inline contains a violation
7

Byte Inlining Relies on Reference-Immutability

3“Gerenuk”Buffer

Only primitive-type assignments are allowed:

foo.i = 5 /* ok */
foo.s = "LongerString" /* violation */

8

Our Runtime Allows Recovery Through aborts

Source Code Annotations

Gerenuk Compiler

Executable

Speculatively transform source

Gerenuk Runtime

9

An abort Runs the Original Task

Gerenuk
Task

Completed
Task

Gerenuk
Runtime

Original
Task

abort()

restart task
and

deserialize

success

success,
serialize result

start task

This is only applicable to dataflow systems (all tasks are independent)

10

Our Compiler Uses Static Analysis to Find Violations

The Gerenuk Compiler inserts abort instructions when we detect violations

Two main challenges:
1. Scalability
2. False positives

11

Insight: Most of the Objects are Data Objects

Reduce our scope to only Data Processing

Data
ProcessingDeserialization Serialization

map, reduce, etc.

Input from
Worker A

Input from
Worker B

Output to
Worker X

Output to
Worker Y

95% of objects created

User must annotate

12

Traditional Static Analysis Must Consider All Paths

i f (foo . i == 3)3

foo . s = “ LongerString ”7

foo . i = 57

T

F

13

aborts enable Speculative Transformation

i f (foo . i == 3)3

abort ()
foo . s = “ LongerString ”7

foo . i = 53

Gerenuk
Runtime

T

F

aborts can be expensive, but should be rare

14

We Ran 12 Applications Across Two Frameworks

Spark
5 applications (LiveJournal, 37GB Synthetic)
Spark library applications

Hadoop
7 applications (StackOverflow, Wikipedia)
MapReduce jobs found on StackOverflow

11-node cluster, each node contains:
• 2 Xeon(R) CPU E5-2640 v3 processors
• 32GB memory
• 200GB SSD
• CentOS 6.9
• Connected via InfiniBand

15

Gerenuk Improves Runtime and Memory in Spark and Hadoop

We ran on 12 applications across two frameworks:
Spark
Improved performance by 2x
Reduced memory usage by 18%

Hadoop
Improved performance by 1.4x
Reduced memory usage by 31%

16

Gerenuk Improves End-to-End Performance of Spark by 2x

1x

PageRank KMeans
Gradient
Boosting

0

1

2

3

1.45

2.4

3.4

0.91

0.65

0.87

Speedup
Memory Usage

17

Gerenuk Improves End-to-End Performance of Hadoop by 1.4x

1x

In-Mapper
Combiner

Community
Expert

Detection

Inactive
Users

Filtering

0

0.5

1

1.5

2

1.2

1.4

2.1

0.84 0.83 0.79

Speedup
Memory Usage

18

Violations are Costly but Infrequent

No experiments hit abort instructions

1x

1 2 4 6 8

1.29

1.43
1.51

1.66

1.8

Number of Aborts

Sl
ow

do
wn

Simulated PageRank Aborts

1x

1

1.12

Number of Aborts

Sl
ow

do
wn

StackOverflow Analytics

19

Summary

We present Gerenuk, which contains:
A compiler that speculatively transforms a program
A runtime that handles assumption violations

We ran on 12 applications across two frameworks:
Spark
Improved performance by 2x
Reduced memory usage by 18%

Hadoop
Improved performance by 1.4x
Reduced memory usage by 31%

20

