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ABSTRACT

Modern object-oriented software commonly suffers from runtime
bloat that significantly affects its performance and scalability. Stud-
ies have shown that one important pattern of bloat is the work re-
peatedly done to compute the same data values. Very often the
cost of computation is very high and it is thus beneficial to mem-
oize the invariant data values for later use. While this is a com-
mon practice in real-world development, manually finding invariant
data values is a daunting task during development and tuning. To
help the developers quickly find such optimization opportunities for
performance improvement, we propose a novel run-time profiling
tool, called Cachetor, which uses a combination of dynamic depen-

dence profiling and value profiling to identify and report operations
that keep generating identical data values. The major challenge in
the design of Cachetor is that both dependence and value profil-
ing are extremely expensive techniques that cannot scale to large,
real-world applications for which optimizations are important. To
overcome this challenge, we propose a series of novel abstractions
that are applied to run-time instruction instances during profiling,
yielding significantly improved analysis time and scalability. We
have implemented Cachetor in Jikes Research Virtual Machine and
evaluated it on a set of 14 large Java applications. Our experimen-
tal results suggest that Cachetor is effective in exposing caching
opportunities and substantial performance gains can be achieved
by modifying a program to cache the reported data.

Categories and Subject Descriptors

D.2.4 [Software Engineering]: Metrics—Performance measures;
D.2.5 [Software Engineering]: Testing and Debugging—Debug-

ging aids

General Terms

Performance, Reliability, Experimentation
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1. INTRODUCTION
Many applications suffer from chronic runtime bloat—excessive

memory usage and run-time work to accomplish simple tasks—
that significantly affects scalability and performance. Our experi-
ence with dozens of large-scale, real-world applications [33, 35,
36, 37] shows that a very important source of runtime bloat is the
work repeatedly done to compute identical data values—if the com-
putation is expensive, significant performance improvement can
be achieved by memoizing1 these values and avoiding computing
them many times. In fact, caching important data (instead of re-
computing them) is already a well-known programming practice.
For example, in the white paper “WebSphere Application Server
Development Best Practices for Performance and Scalability” [3],
four of the eighteen best practices are instructions to avoid repeated
creation of identical objects. While finding and caching identical
data values is critical to the performance of many large-scale soft-
ware systems, the task is notoriously challenging for programmers
to achieve during development and tuning. A large, long-running
program may contain millions of instructions, and each instruction
may be executed for an extremely large number of times and pro-
duce a sea of data values. It would be extremely difficult, if not
impossible, to find identical run-time data values and understand
how to cache them without appropriate tool support.

Motivation To illustrate, consider the following code example,
adapted from sunflow 2, an open-source image rendering system.

float[] fValues = {0, 1.0, 2.3, 1.0, 1.0, 3.4, 1.0, 1.0,

. . . , 1.0};
int[] iValues = new int[fValues .length] ;
for (int i = 0; i < fValues .length; i++){

iValues[i] = Float.floatToIntBits(fValues[i]);
}

This simple program encodes each float value in array fValues

using a bit array (represented by an Integer), which can then be
stored in an Integer array. In this example, most of the values in
fValues are 1.0, and it is unnecessary to invoke method Float.
floatToIntBits (which is quite expensive) to compute the bit
array for each of them. The program would run more efficiently
if Float.floatToIntBits can be invoked the first time 1.0
is seen , and the result can be cached and reused for its future
occurrences. However, this information may not be available to
the programmer during development, as fValues may be a dynam-
ically computed array whose content is unknown at compile time,
or the fact that most of its elements are the same is specific to a
certain kind of input image being processed. As a result, it is neces-
sary to develop techniques and tools that can help the programmer

1Terms “memoize” and “cache” are used interchangeably.
2http://sunflow.sourceforge.net/.
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Figure 1: An overview of Cachetor.

find such missed optimization opportunities (e.g., report method
floatToIntBits is frequently executed with the same input
and produces the same output), especially in a situation where a
significant performance issue is observed and tuning must be un-
dertaken to make the application reach its performance goal.

Our proposal In this paper, we propose a dynamic analysis
tool, called Cachetor, that profiles large-scale applications to pin-
point cacheable data values and operations producing these val-
ues. Cachetor has three major components, which are illustrated
in Figure 1. At the lowest level of the tool is an instruction-level
cacheable value detector called I-Cachetor, which identifies (byte-
code) instructions whose executions produce identical (primitive-
typed) values. Finding only instructions that always produce the
same values may significantly limit the amount of optimization op-
portunities that can be detected. To improve usefulness, we pro-
pose to compute a cacheability measurement for each instruction,
that captures the percentage of the most frequently-occurring value
among all values produced by the instruction. For example, al-
though the call instruction that invokes floatToIntBits does
not always return the same value, this instruction has a high CM
and will thus be recognized by the developer during inspection.

I-Cachetor is of limited usefulness by itself—it is often not pos-
sible to cache values produced by specific instructions. We develop
two higher-level detectors, namely D-Cachetor and M-Cachetor,
that detect data structures containing identical values and method

calls producing identical values, respectively, to help developers un-
derstand and fix inefficiencies at a logical level. D-Cachetor queries
I-Cachetor for the CMs of the heap store instructions that write into
a data structure and aggregate these instruction-level CMs to com-
pute the CM of the data structure. M-Cachetor focuses on the value
returned from each call site: it queries I-Cachetor for the CM of
the call instruction if the return value is of primitive type, or, other-
wise, queries D-Cachetor for the CM of the returned object, so as
to compute the CM of the call site. Eventually, allocation sites and
method calls are ranked based on their respective CMs and the lists
are reported to the developer for manual inspection.

Fixing problems reported by Cachetor Because Cachetor re-
lates optimization opportunities with high-level program entities,
the reported problems can be easily understood and fixed. For ex-
ample, D-Cachetor reports allocation sites that create identical ob-
jects and data structures. To fix the reported problems, one may
create a singleton pattern for such an allocation site to enforce the
use of one single instance throughout the execution, or develop a
clone method in its class to directly copy values between the ob-
jects instead of re-computing the (same) values from the scratch.
As another example, M-Cachetor reports call sites whose execu-
tions always produce the same results. One may easily create a
(static or instance) field and cache the result of such a call site in the
field, so that the frequent invocation of the method can be avoided.

Technical challenges and our solution The biggest challenge
that stands in the way of implementing Cachetor is how to find
these identical data values in a scalable way so that Cachetor can
be applied to large, real-world applications. In particular, the im-
plementation of I-Cachetor requires the comparison of run-time
values produced by different executions of the same instruction.
To do this, a natural idea is to perform whole-program value pro-

filing [10], which records run-time values for all instruction exe-
cutions. These values are compared offline to identify cacheable
instructions. In addition, in order to compute data-structure-level
CMs, a dynamic dependence analysis may be needed to understand
which data structure an instruction may write into at run time. How-
ever, both whole-program value profiling and dependence analysis
are extremely expensive techniques that cannot scale to real-world
applications. To improve the practicality of our analysis, we pro-
pose a novel approach that combines value profiling with dynamic
dependence analysis in a way so that they mutually improve the
scalability of each other. Specifically, we use distinct values pro-
duced at run time to abstract dependence graph nodes, yielding a
value-abstracted dynamic dependence graph. This graph contains
the value information necessary for our analysis, and yet is much
smaller and easier to compute than a regular dynamic dependence
graph. We then propose a series of further abstractions based on
this dependence analysis to scale Cachetor to the real world.

We have implemented this combined dependence and value pro-
filing technique in Jikes Research Virtual Machine [16], and then
built the three detectors based on the abstract representation. An
evaluation of the tool on a set of 14 large-scale Java applications
shows that Cachetor incurs an overall 201.96× running time over-
head and 1.98× space overhead. While these overheads are very
large, they have not prevented us from collecting any run-time data
for real-world applications. In fact, it could have been impossible
to implement such a heavyweight analysis on real-world applica-
tions (such as those in the DaCapo benchmark set [7]) without the
proposed abstractions. We have carefully inspected the analysis
reports; fixing the reported problems has led to significant perfor-
mance improvements for many large-scale applications. This expe-
rience is described in the five case studies in Section 5.

The major contributions of the paper are:

• A novel approach that uses distinct values to abstract instruc-
tion instances and dependence relationships, leading to sig-
nificantly increased efficiency;

• Three cacheability detectors that are built on top of the value-
abstracted dependence graph to find caching opportunities;

• An implementation of Cachetor in Jikes Research Virtual
Machine;

• An evaluation of Cachetor on a set of large Java applications
that shows (1) Cachetor incurs a high but acceptable over-
head and (2) large optimization opportunities can be quickly
found from Cachetor’s reports. These initial results suggest
that Cachetor is useful in practice in helping developers find
caching opportunities, and our combined dependence and
value profiling may be employed to improve the efficiency
of a variety of dynamic analysis techniques.

2. VALUE-ABSTRACTED DYNAMIC

DEPENDENCE ANALYSIS
The naive implementation of either dynamic dependence analy-

sis or value profiling cannot scale to large, real-world applications
for which optimizations are important. To overcome this scalability
challenge, we propose a novel technique, called value-abstracted
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Figure 2: An example of value-abstracted data dependence graph.

dependence analysis, that uses distinct run-time values an instruc-
tion produces to define a set of equivalence classes to abstract de-
pendence graph nodes (i.e., instruction instances), leading to signif-
icantly reduced analysis time and space consumption.

2.1 Value-Abstracted Dependence Graph
To formally define the abstraction, we first give our definition

of dynamic dependence graph. Since our goal is to detect caching
opportunities, we are interested only in data dependence.

Definition 1 (Dynamic Data Dependence Graph) A dynamic data

dependence graph (N , E ) has node set N ⊆ S × I, where each

node is a static instruction (∈ S) annotated with a natural number

i (∈ I), representing the i-th execution of this instruction. An edge

s
j
1 → sk

2 (s1, s2 ∈ S and j, k ∈ I) shows that the j-th execution

of instruction s1 writes a (heap or stack) location that is then used

by the k-th execution of s2, without an intervening write to that lo-

cation. If an instruction accesses a heap location through v.f , the

reference value in stack location v is also considered to be used.

While Cachetor works on the low-level JVM intermediate rep-
resentation, the discussion of the algorithms uses a three-address-
code representation of the program (e.g., an assignment a = b or a
computation a = b + c). We will use terms statement and instruc-
tion interchangeably, both meaning a statement in the three-address-
code representation. We divide the static instruction set S into SP
and SR, which contain instructions that process primitive-typed
and reference-typed data, respectively. The first step of our analy-
sis targets SP, because we are interested in finding instructions that
produce identical primitive-typed values. SR will be considered in
the next stage when the cacheability information of instructions in
SP needs to be aggregated to compute the cacheability information
for objects and data structures (in D-Cachetor).

For an instruction s ∈ SP, we use Vs to denote the set of distinct
values that the instances of s produce at run time. We use each
value v ∈ Vs as an identifier to determine an equivalence class
including a set of instances of s that produce the same value v.
The definition of the value-abstracted dependence graph is given as
follows:

Definition 2 (Value-Abstracted Data Dependence Graph) A

value-abstracted data dependence graph (N ′, E ′) has node set

N ′ ⊆ SP × V , where each node is a pair of a static instruction

s ∈ SP and a value v ∈ Vs (represented as sv), denoting the set

of instances of s that produce the same value v. An edge sw
1 → sx

2

(s1, s2 ∈ SP and w, x ∈ V) shows that an instance of s1 that

produces a value w writes a location that is used by an instance of

s2 that produces a value x, without an intervening write to that lo-

cation. If an instruction accesses a heap location through v.f , the

reference value in stack location v is also considered to be used.

In the value-abstracted dependence graph, instances of an in-
struction that produce the same run-time value are merged and rep-
resented by a single node. The advantage of developing such an
abstraction is two-fold: (1) the number of distinct values produced
by an instruction is often much smaller than the total number of
executions of the instruction; this is especially true for (cacheable)
instructions that frequently produce identical values, leading to re-
duced dependence graph size and profiling cost; (2) the merged
nodes and edges are very likely to represent computation paths that
ultimately produce the same results; maintaining one single copy
of the path would often suffice to help us understand how these re-
sults are computed; computation paths leading to different results
are still distinguished.

Example To illustrate, consider the example in Figure 2. Part
(a) shows a simple program where each integer in the array input

is passed into function f, which simply computes the integer to
the power of 4 (i.e., arr [i]4). Note that among the six integers
in input , four of them are 1, and hence, it is highly beneficial
to cache and reuse the result of function f for the specific input
value 1. Shown in Figure 2 (b) is an important part of the value-
abstracted dependence graph for the program execution. Each edge
in the graph is annotated with the number of occurrences of the de-
pendence relationship the edge represents during execution. Each
node in Figure 2 (b) is a static instruction annotated with a (dis-
tinct) value it produces. The static instruction is represented by its
line number in the program. The left part of the value-abstracted
dependence graph combines the computations for i = 0, 2, 3, and 4
(i.e., input [i] = 1)—for these four input values, all instructions ex-
cept those at line 8 and 12 produce the same output value 1. Edges
annotated with high frequencies represent common computations
that may be reused to improve performance. Dependence relation-
ships for i = 1 (i.e., input [i] = 2) are shown in the right part, where
each dependence edge occurs only once. Dependence relationships
for i = 5 are similar to those for i = 2 and are thus omitted from the
figure.

While using distinct values to abstract dynamic dependence graph
can significantly reduce the graph size and the profiling cost, the
numbers of distinct values can be very large for some instructions,
such as those that increase loop variables (e.g., line 12 in Figure 2).
Because each instance of such an instruction produces a different
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value, its instances can never be merged. In addition, the execution
frequency of the instruction depends completely on the number of
loop iterations, which is input-sensitive and unbounded, and thus,
it can still be difficult to collect the value-abstracted dependence
graph for large-scale, long-running applications.

Our experience shows that key to developing a scalable dynamic
analysis is to statically bound the amount of information to be col-

lected dynamically. In other words, the size of the profile should
have an upper bound before the execution; it cannot depend on
dynamic behaviors of the program. In Cachetor, we propose to fur-
ther limit the number of equivalence classes for each instruction to
a fixed number k, so that at most k dependence graph nodes can
be recorded regardless of how many times the instruction is exe-
cuted. To do this, we define a hash function h(v) = v%k that uses
a simple modulo operation to map each distinct run-time value v

produced by the instruction into an integer in the set [0, k). If v is
a floating point value, it is cast to an integer before the hash func-
tion is performed. This abstraction results in a hash-value-based
dependence graph, defined as follows:

Definition 3 (Hash-Value-Abstracted Data Dependence Graph)

A hash-value-abstracted data dependence graph (N ′′, E ′′) has node

set N ′′ ⊆ SP × [0, k), where each node is a pair of a static in-

struction s ∈ SP and an integer m ∈ [0, k) (represented as sm),

denoting the set of instances of s whose results are mapped to the

same number m by the hash function h. An edge s
m1

1 → s
m2

2

(s1, s2 ∈ SP and m1, m2 ∈ [0, k)) shows that an instance of s1

whose result is mapped to m1 writes a location that is used by an

instance of s2 whose result is mapped to m2 without an interven-

ing write to that location. If an instruction accesses a heap location

through v.f , the reference value in stack location v is also consid-

ered to be used.

Note that the hash-value-abstracted dependence graph is a lossy

representation, where the parameter k defines a tradeoff framework
between analysis precision and scalability. k can be provided by
the user as a tuning parameter to find the sweetspot for a particular
program. We associate a frequency count with each graph node,
representing the number of instruction instances that are mapped
to the node. It is clear to see that instructions whose executions
are dominated by one graph node are more likely to create identi-
cal values than those whose execution frequencies are thinly spread
among multiple nodes. In our experiments, we have evaluated Ca-
chetor using different k’s. We find that (1) a prime number pre-
serves more information than a composite number and (2) a rela-
tively small number can often be very effective to distinguish truly
cacheable instructions from those that are not. Details of our evalu-
ation can be found in Section 5.

2.2 Adding Calling Context Abstraction
In order to compute cacheability for an object (in D-Cachetor),

we need to aggregate the cacheability information for instructions
that write into the object. A common abstraction for modeling a
heap object is its allocation site. However, using only allocation
sites to aggregate run-time information can cause significant impre-
cision, leading to reduced usefulness of the tool. This is especially
true for large-scale object-oriented applications that make heavy
use of data structures. For example, each HashMap has an inter-
nal entry array and all these array objects are created by the same
allocation site. Failing to distinguish array objects based on the
HashMap objects they belong to would cause all HashMaps to have
similar cacheability measurements.

Object contexts [23] have been widely used in static analysis to
distinguish objects that belong to different data structures. An ob-

ject context is represented by a chain of allocation sites of the re-
ceiver objects for the method invocations on the call stack. We
propose to add object contexts into the dependence graph so that
instructions that write into different data structures can be distin-
guished and the cacheability of an instruction can be appropriately
attributed to the cacheability of the data structure that the instruc-
tion writes into. Details about the cacheability computation will be
discussed shortly in the next section.

It can be extremely expensive to record a chain of allocation sites
for each dependence graph node. To solve the problem, we encode
an object context into a probabilistic unique value. An encoding
function proposed in [8] is adapted to perform this computation:
ci = 3 * ci−1 + ai, where ai is the i-th allocation site ID in the
chain and ci−1 is the probabilistic context value computed for the
chain prefix with length i - 1. While simple, this function exhibits
very small context conflict rate, as demonstrated in [8]. Similarly
to the handling of distinct values, we bound the number of object
contexts allowed for each instruction with a user-defined parameter
k′, and map each context ci to a number in [0, k′) using the same
hash function ci%k′. Note that this modeling is performed for both
instructions that manipulate primitive-typed values (i.e., SP) and
those that manipulate objects (i.e., SR). The addition of object
contexts results in a new dependence graph, which we refer to as
value-and-context (VC)-abstracted data dependence graph: each
instruction s ∈ SP has a pair annotation 〈m, n〉, where m is a hash
value ∈ [0, k) and n is a hash context ∈ [0, k′); each instruction
s ∈ SR has only one (context) annotation n ∈ [0, k′). The VC-
abstracted data dependence graph is defined as follows:

Definition 4 (VC-Abstracted Data Dependence Graph) A VC-

abstracted data dependence graph (N ′′′, E ′′′) has node set N ′′′ ⊆
SP × [0, k) × [0, k′) ∪ SR × [0, k′), where each node is either

a triple s
〈m,n〉
1 (s1 ∈ SP, m ∈ [0, k), n ∈ [0, k′)) , denoting

the set of instances of s1 whose results are mapped to the same

number m and whose object contexts are mapped to the same num-

ber n, or a pair sn
2 (s2 ∈ SR, n ∈ [0, k′)), denoting the set of

instances of s2 whose object contexts are mapped to the same num-

ber n. Each edge can have one of the three forms: s
n1

1 → s
n2

2 ,

s
〈m1,n1〉
1 → s

〈m2,n2〉
2 , or s

n1

1 → s
〈m,n2〉
2 . The first two forms rep-

resent the propagation of a reference-typed and a primitive-typed

value, respectively. The third form represents a pointer dereferenc-

ing operation.

Cachetor profiles a program execution to compute a VC-abstracted
data dependence graph. This graph will be used by a series of of-

fline analyses discussed in the next section to compute cacheability
measurements and rank data structures/call sites. The profiling de-
tails can be found in Section 4.

3. CACHEABILITY COMPUTATION
This section presents three offline analyses that take a VC-

abstracted dependence graph as input and compute cacheability
measurements (CM) for instructions, data structures, and call sites.
These measurements are subsequently used to rank the correspond-
ing program entities to facilitate user inspection.

3.1 Computing Instruction Cacheability Mea-
surements

The first analysis, I-Cachetor, computes CMs for static instruc-
tions. The higher CM an instruction has, the more identical values
the instruction produces during execution. As discussed in Sec-
tion 2.1, each dependence graph node s〈m,n〉 is associated with an
execution frequency count, recording the number of instruction in-
stances that are merged into this node. Using freqm,n

s to represent
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the frequency associated with node s〈m,n〉, we give the definition
of the instruction CM as follows:

Definition 5 (Instruction Cacheability Measurement (ICM)) For

each static instruction s ∈ SP, its ICM is defined as

ICMs = Avg0≤n<k′
Max0≤m<k(freq

〈m,n〉
s )

Sum0≤m<k(freq
〈m,n〉
s )

over all VC-abstracted data dependence graph nodes of the form

s〈m,n〉 .

ICM is computed only for instructions that manipulate primitive-
typed data. For each VC-abstracted dependence graph node s〈m,n〉 ,
we first fix its context slot n, and compute a ratio between the maxi-
mum of the frequencies and their sum over the nodes with different
hash values m. The ICM of s is finally computed as the average
of these ratios for all contexts n. It is clear to see that 1

k
≤ ICMs

≤ 1. If the instruction always produces the same value during exe-
cution, its ICM is 1. On the other hand, if the values the instruction
produces are spread evenly in the k hash value slots, its ICM is 1

k
.

ICM is not particularly useful by itself, because it can be very
difficult, if not impossible, for the developer to cache the value
of a particular instruction in the program. To further improve Ca-
chetor’s usefulness, we develop two high-level cacheability detec-
tors to help the developer make sense of the heap and execution
information at a high, logical level. ICM will be used later by the
two detectors to compute high-level CMs.

3.2 Computing Data Structure Cacheability
Measurements

The second offline analysis, D-Cachetor, aggregates ICMs for
instructions that write into a data structure to compute data struc-
ture cacheability measurements (DCMs). Specifically, we com-
pute a DCM for each allocation site, summarizing the likelihood
of the run-time data structures created by the allocation site con-
taining identical data values. We find that focusing on allocation
sites achieves the right balance between the amount of optimization
opportunities that can be detected and the difficulty of developing
fixes. For example, if an allocation site has a 100% CM, we may
simply cache and reuse one single instance for it. Optimization
opportunities can still be found for allocation sites with smaller
CMs—although their objects are not entirely identical, they may
contain identical fields, which may be cached for improved perfor-
mance.

Note that simply ranking allocation sites based on their execution
frequencies cannot reveal caching opportunities. For example, in a
typical large application, the most frequently executed allocation
site is the one in HashMap.put that keeps creating Map$Entry
objects to store newly-added keys and values. Objects created by
this allocation site are not reusable at all. Hence, it is necessary to
develop new metrics for allocation sites in our framework.

A data structure often contains multiple levels of objects, and
hence, we first consider the computation of cacheability measure-
ments for individual objects (i.e., OCMs). OCMs are aggregated
later based on the reference relationships among objects to form the
DCM of a data structure. To compute the OCM for an allocation
site o, we focus on heap store instructions that access primitive-
typed data only. Reference-typed stores will be considered later
when OCMs are aggregated.

The OCM computation starts with inspecting each allocation site
of the form o : a = new A. As the allocation site accesses a
reference-typed variable, it belongs to the instruction set ∈ SR
and has a total of k′ nodes in the VC-abstracted dependence graph.
Each node is of the form on, where n is a hash context value

a.f = b
<3,5>

a = c
2

(a) A simple program

b = d
<4,3>

...

pointer dependence
value dependence

h = c
3

h.g = 10
<4,1>

h.t = p
5

p = new P
2

p.q = 20
<2,3>

1 C c = new C();

2 C a = c;

3 int b = d;

4 a.f = b;

5 P p = new P();

6 p.q = 20;

7 C h = c;

8 h.g = 10;

9 h.t = p;

c = new C
1

(b) Its dependence graph

Figure 3: An example program, and its value and pointer de-

pendence.

∈ [0, k′). The analysis traverses the VC-abstracted dependence
graph starting from each such node find a set of nodes of the form

s : a.f = b〈m,n′〉 such that s ∈ SP and a points to an object
created at on. This can be done by distinguishing pointer depen-

dence and value dependence in the dependence graph. A pointer de-
pendence relationship occurs between an instruction instance that
defines a pointer variable and a subsequent (load or store) instruc-
tion instance that dereferences this pointer. A value dependence
relationship occurs between an instruction instance that writes a
value into a (stack or heap) location and a subsequent instruction
instance that reads the value from the location. Figure 3 shows a
simple program and its dependence graph. These two dependence
relationships are represented by dashed arrows and solid arrows, re-
spectively. Note that nodes that have pair annotations and that have
single (context) annotations in Figure 3 (b) represent instruction in-
stances manipulating primitive-typed and reference-typed values,
respectively. Suppose Figure 3 (a) shows an inlined program—
those statements are originally located in different methods. Hence,
different statements may have different context encoding in Fig-
ure 3 (b).

In order to find the set of nodes that write into an object cre-
ated by an allocation site, we perform a depth-first traversal from
each node on representing the allocation site. During the traver-
sal, we are interested in such a pointer dependence edge e that e is
reachable from on only through value dependence edges. In other
words, no other pointer dependence edge exists between e and the
root node on. Clearly, the target node of e represents an instruc-
tion instance that reads/writes an object of the allocation site on.
Among these (target) nodes, we are interested only in those that
write primitive-typed values into the object. This subset of nodes is
referred to as the object writing instruction set (OWIS) for the allo-
cation site node on. The OWIS for node c = new C1 in Figure 3
includes, for example, a.f = b〈3,5〉 and h.g = 10〈4,1〉 . Note
that node h.t = p5 writes a reference into an object created by c =
new C1 (i.e., it has a single context annotation), and thus, is not
considered in the OCM computation. Now we give the definition
of on’s object cacheability measurement:

Definition 6 (Object Cacheability Measurement (OCM)) For each

allocation site node on, o ∈ SR, its OCM is defined as

OCMon = Avgs∈OWISICM s,OWIS
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Algorithm 1: Finding allocation site nodes that belong to the
same data structure.

Input: VC-abstracted data dependence graph g, selection ratio r

Output: Map<Node, Set<Node> > dsMap

1 Set<Node> visited ← ∅ // Alloc site nodes that have been visited
2 foreach Alloc Site Node o

n in g do

3 List<Node> allocList ← {on}
4 Set<Node> ds ← {on}
5 dsMap ← dsMap ∪ {〈on

, ds〉}
6 while allocList 6= ∅ do

7 Alloc Site Node p
c ← removeTop(allocList)

8 if p
c ∈ visited then

9 continue

10 visited ← visited ∪ {pc}
11 List<Node> reachedNodes ← {pc}
12 while reachedNodes 6= ∅ do

13 Node q
d ← removeTop(reachedNodes)

14 foreach outgoing edge e of node q
d do

15 if e is a pointer dep edge and target(e) writes a reference

value then

16 Node r
e ← target(e)

17 foreach incoming edge e
′ of node r

e do

18 if e
′ is a value dependence edge then

19 /*traverse backward*/
20 Alloc Site Node

o
′n′
← backwardTraverse(e′)

21 /*if the difference between the OCMs of o
n

and o
′n′

are≤ r*/

22 if
|OCM

o′n
′ −OCMon |

OCMon
≤ r then

23 ds ← ds ∪ {o′n′
}

24 allocList ← allocList ∪ {o′n′
}

25 else if e is a value dep edge and target(e) writes a

reference value then

26 reachedNodes ←
reachedNodes ∪ {target(e)}

27 return dsMap

where OWIS is the object writing instruction set for node on, and

ICM s,OWIS denotes the ICM of the instruction s computed over

the nodes in OWIS.

The OCM of an allocation site node is determined by the ICMs
of the instructions that write primitive-typed values into the objects
created by the allocation site. However, the ICM for an instruction
used here is computed over the nodes in the OWIS of on, while
the ICM in Definition 5 is computed over all nodes for the instruc-
tion. Because a static instruction may write into objects created by
different allocation sites during execution, its graph nodes that are
unreachable from on are not considered towards the computation
of on’s OCM.

DCM computation The OCM computation considers only the
primitive-typed values contained in an object. In order to find large
optimization opportunities, we compute DCMs for data structures
by considering reference-typed store instructions and aggregating
OCMs of the objects connected by such instructions. For each allo-
cation site node on, the DCM computation first identifies other al-
location site nodes pc that belong to the same logical data structure
rooted at on. This can be done by traversing the dependence graph
from each node on and transitively following pointer dependence
edges. Algorithm 1 describes the details of such a traversal. The
algorithm takes as input a VC-abstracted dependence graph and a
selection ratio r ∈ [0, 1], and eventually computes a map dsMap

that contains, for each allocation site node in the graph (e.g., on),

a set of allocation site nodes (e.g., ds at line 4) that may belong to
the same logical data structure.

Initially, ds contains one single element on (line 4), and more
allocation site nodes will be gradually added into ds as the data
structure is being discovered by the analysis. allocList is a list of
allocation site nodes that have been identified as part of the data
structure. These nodes need further inspection to find those that are
transitively reachable from them. In the beginning of the analysis,
allocList has one node on (line 3). Lines 6–26 show a worklist-
based iterative process to discover the data structure. Each iteration
of the process retrieves an allocation site node pc from allocList

and attempts to find allocation site nodes that are referenced by pc.
This is achieved by performing a breath-first traversal of the graph
starting from node pc (lines 12–24). For each node qd reached
during the traversal (line 13), the algorithm inspects each of its out-
going edges. If an outgoing edge e is a value dependence edge that
propagates a reference value (lines 25–26), the target node of e is
added into list reachedNodes for further inspection. We are par-
ticularly interested in pointer dependence edges whose target is a
store node writing a reference value (lines 15–24), such as h.t = p5

in Figure 3, because such an edge can lead the analysis to find allo-
cation sites that are referenced by pc.

Once such a pointer dependence edge is found, lines 17–24 tra-
verse backward the dependence graph, starting from the target (re)
of the edge. This backward traversal follows only value depen-

dence edges until it reaches an allocation site node o′n
′

(line 20),
which is the creation point of the object that flows to re. It is impor-

tant to note that we add o′n
′

into the data structure set ds only when

the OCM of o′n
′

and the OCM of the root of the data structure on

are close enough (i.e., their difference is ≤ the given selection ratio
r). In other words, we select objects that have similar cacheabil-
ity measurements to form a data structure so that the developer can
easily find and fix problems related to the data structure.

Example We use the simple example in Figure 3 to illustrate
how the algorithm works. In order to identify the data structure
rooted at the node c =new C1, our analysis traverses the graph
until it reaches a pointer dependence edge whose target node (i.e.,
h.t = p5) is a heap store writing a reference value. Next, Lines 15–
24 in Algorithm 1 traverse backward the dependence graph start-
ing from h.t = p5, following only value dependence edges. This
traversal leads up to the allocation site node p =new P 2. There ex-
ists a “reference” relationship between this node and node c =new
C1. The OCMs of these two nodes are then compared (against
the selection ratio r) to determine whether p =new P 2 should be
included in the data structure set of c =new C1.

Using DSon to represent the set of allocation nodes discovered
by Algorithm 1 for the root note on, we give the definition of DCM
as follows. Note that on itself is also included in DSon .

Definition 7 (Data Structure Cacheability Measurement (DCM))

For each allocation site node on, its DCM is defined as

DCMon = Avgpd∈DSon
OCM pd

where OCM pd is the object cacheability measurement for the allo-

cation site node pd, as defined in Definition 6.

Eventually, allocation site nodes are ranked based on their DCMs
and the ranked list is reported to the user for manual inspection.
When Cachetor reports an allocation site node on, it reports not
only on itself but also the data structure DSon computed by Algo-
rithm 1. This would make it easier for the developer to understand
the problem and develop the fix to cache the (invariant part) of the
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data structure. Note that different graph nodes for the same static
allocation site are reported separately based on their DCMs. The al-
location site may be cacheable only under certain calling contexts;
reporting them separately (instead of combining them using an av-
erage) would potentially reveal more optimization opportunities.

3.3 Computing Call Site Cacheability
Measurements

The third offline analysis, M-Cachetor, computes cacheability
measurements for call sites. Our target is call sites that have val-
ues returned from the callees. We are not interested in those that
do not bring values back, because it is often unclear how to avoid
re-executing such calls. Given a call site of the form a = f(. . .), its
call site cacheability measurement (CCM) is determined by whether
a always receives identical values. It is computed by either query-
ing I-Cachetor for the ICM of the instruction (if a is a primitive-
typed variable) or querying D-Cachetor for the DCM(s) of the al-
location site(s) that create the objects a can point to. Formally, we
give the definition of CCM as follows.

Definition 8 (Call Site Cacheability Measurement (CCM)) For

each call site c : a = f(. . .), its CCM is defined as

CCM c =

(

ICM c a is a primitive-typed var

Avgon∈Alloc(a)DCM on otherwise

where Alloc(a) is a set of allocation site nodes such that the objects

created at these allocation sites may flow to a.

The set of allocation site nodes (Alloc(a)) can be obtained by
traversing backward the dependence graph from the call site (into
the callee) and following only value-dependence edges. This pro-
cess is similar to what lines 18–24 do in Algorithm 1. Note that
to compute CCM for a call site, we consider only whether the call
returns identical values, regardless of its arguments. This defini-
tion may potentially expose more optimization opportunities—if
the call produces the same output under different inputs, there may
be some repeated computation inside the method that can be reused
for increased efficiency. Eventually, call sites are ranked based on
their CCMs and then reported to the user.

Another important optimizability measurement is the execution
frequency of each allocation/call site. To take this into account,
we take the top 100 allocation/call sites from their respective lists
(ranked based on the DCMs and CCMs), and re-rank them based
on their frequencies. These newly ranked lists contain information
regarding not only cacheability but also execution “hotness”; the
developer could thus focus her effort on fixing problems with allo-
cation/call sites that are both cacheable and frequently executed.

4. DEPENDENCE GRAPH PROFILING
We have implemented Cachetor in the Jikes Research Virtual Ma-

chine (RVM) version 3.1.1 [16]. JikesRVM contains two Just-In-
Time (JIT) compilers: a baseline compiler that directly translates
Java bytecode into Assembly code, and an optimizing compiler that
recompiles and optimizes hot methods for improved performance.
The Cachetor instrumentation is performed on the high-level inter-
mediate representation (HIR) generated by the optimizing compiler,
and thus it runs in the optimizing-compiler-only mode.

As the parameters k (i.e., the number of value slots) and k′ (i.e.,
the number of context slots) are determined by the user before the
execution, all dependence graph nodes can be created at the com-
pile time. Specifically, we inspect each HIR instruction during the
compilation; if the instruction manipulates primitive-typed data, we

allocate an k×k′ array and each slot of the array represents a graph
node for the instruction; if the instruction manipulates references,
we only need to create an array of k′ slots. We use a shadow mem-

ory to perform the dependence graph profiling. For each memory
location l in the program, we maintain a shadow location l′ that
keeps track of the address of the graph node that represents the
instruction instance that last writes into l. If l is a stack variable,
l′ is simply a new (32-bit) variable in the same method stack. To
shadow heap locations, we introduce an additional (32-bit) field for
each existing field in each class. To shadow an array with s slots,
we modify the object allocator in the JikesRVM in a way so that
an additional space of s ∗ 4 bytes is allocated and appended to the
space of the array upon its creation.

At each instruction that reads locations l1, l2, . . . , ln and writes
location l0, our instrumentation code adds dependence graph edges
in the following three steps: (1) the current (encoded) calling con-
text and the value in l0 are retrieved. These values are used to deter-
mine which dependence graph node n this particular instance of the
instruction should be mapped to; (2) values contained in the shadow
locations of l′1, l

′
2, . . . , l

′
n are retrieved. These values correspond to

(the addresses of) the dependence graph nodes that last write into
l1, l2, . . . , ln, respectively; (3) we add a dependence graph edge
between each node contained in l′i and node n, representing a de-
pendence relationship. The address of n is then written into the
shadow location l′0; this address will be retrieved later when another
instruction uses l0. Eventually, if the instruction does a pointer def-
erence on li, the edge connecting l′i and n is annotated with pointer
dependence; otherwise, it is annotated with value dependence.

We create a tracking stack to propagate tracking information be-
tween callers and callees. In addition, instrumentation code is in-
serted before each call site and in the beginning of each method
in order to calculate object contexts. When a method is executed,
its current object context is stored in a local variable, which will
be retrieved and used later to determine dependence graph nodes.
It is important to note that Cachetor is thread-safe. We collect a
VC-abstracted dependence graph per thread and eventually com-
bine these graphs to compute various CMs.

5. EVALUATION
We have applied Cachetor to a set of 14 real-world programs,

from both the DaCapo benchmark set [7] and the Java Grande
benchmark set [2]. We are not aware of any publicly available tool
that can provide similar diagnostic information to serve as basis for
comparison. Therefore, in this section, we describe the overhead
measurements and our experiences with finding and fixing perfor-
mance problems using Cachetor.

All programs were executed with their large workloads. Exper-
imental results were obtained on a quad-core machine with Intel
Xeon E5620 2.40 GHz processor, running Linux 2.6.18. The maxi-
mal heap size was 4GB.

5.1 Overhead Measurements
Table 1 shows our overhead measurements. The parameters k

and k′ used to obtain the data are both 11. It appears that 11 is
the largest prime number to which our benchmarks can scale. In-
creasing either k or k′ to 13 causes some programs to run out of
memory. Due to space limitations, we report only the worst-case
performance measurements (for k = k′ = 11). Using a smaller k

or k′ will significantly reduce the time and space overheads. User
may use k and k′ as tuning parameters to find the balance point be-
tween the precision of the report and the scalability of the analysis.
Section (a) reports the characteristics of 14 benchmarks in term of
the size of their VC-abstracted graphs (i.e., number of nodes and
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Table 1: Our benchmarks, the characteristics of their VC-abstracted graphs, and the overhead measurements.

Program (a) Graph characteristics (b) Time overhead (c) Space overhead
#Nodes #Edges #Classes #Methods T0 (s) T1 (s) TO (×) S0 (MB) S1 (MB) SO (×)

antlr 333212 1217324 121 1297 13.48 7654.49 566.90 42.69 426.40 8.99
bloat 339295 371854 252 1780 69.42 2765.86 38.84 119.74 199.64 0.67

fop 188947 85003 671 2581 2.05 40.51 18.80 82.47 135.79 0.65
hsqldb 77484 16317 140 1126 10.50 45.81 3.36 295.06 457.40 0.55

luindex 122914 69281 118 652 13.79 3967.88 286.78 50.12 123.74 1.47
lusearch 109549 35726 110 549 5.52 935.25 168.41 67.91 179.90 1.65

pmd 201069 107503 391 2298 20.24 6438.53 317.09 96.54 174.71 0.81
xalan 246202 122172 353 2192 16.07 1016.12 62.23 169.43 226.77 0.34

avrora 541244 545131 377 1132 29.75 5332.26 178.24 91.70 254.46 1.77
sunflow 419705 1131193 140 537 53.22 12447.50 232.88 82.08 336.80 3.10

euler 62656 3821 8 38 14.11 3637.41 256.79 34.02 81.74 1.40
moldyn 20350 19761 13 76 33.36 8451.03 252.33 14.49 27.49 0.90

montecarlo 12749 14105 18 106 20.90 3088.01 146.75 549.81 824.77 0.50
raytracer 13464 252030 16 67 42.99 12852.51 297.97 12.56 74.76 4.95

GeoMean 201.96 1.98

edges) and source code (i.e., number of classes and methods that
are executed and instrumented by Cachetor).

Section (b) and (c) of the table report the overheads of Cachetor.
The running time measured for our tool (column T1) includes both
the actual execution time and the time for the offline analyses, which
occur before the JVM exits. On average, the tool incurs a 201.96×
overhead in execution time. The additional peak memory consump-
tion is 1.98× larger than that of the original program across all
benchmarks. This is due to the extra space for memory shadowing
as well as the VC-abstracted graph. While both time and space over-
head of our tool are too high for production executions, they may be
acceptable for performance tuning and debugging. In addition, the
high overhead has not prevented us from collecting data from real-
world applications. This paper focuses on the demonstration of the
usefulness of the technique, and future work may consider various
optimization techniques, such as sampling and selective profiling
of certain suspicious areas, to reduce Cachetor’s overheads.

5.2 Case Studies
We have inspected the analysis reports for all the benchmarks in

Table 1. This section describes our studies on five of them: mon-

tecarlo, raytracer, euler, bloat and xalan. It takes us 2 weeks to
conduct the studies. We choose to report our experience with these
benchmarks partly because they contain interesting (representative)
coding patterns leading to repeated computations of identical data
values, and partly because large performance improvements have
been seen after the implementation of fixes (e.g., 98.7% space re-
duction for montecarlo and 20.5% running time reduction for eu-

ler). These reports were generated under the same analysis config-
uration and 30% was chosen to be the selection ratio r (described
in Algorithm 1). We have compared the analysis reports generated
under three different r (i.e., 10%, 30% and 50%), and find that r

= 30% appears to be a balance point between the amount of opti-
mization opportunities that can be found and the difficulty of devel-
oping fixes. While r = 10% identifies truly optimizable data struc-
tures, the size of each reported data structure is very small. On the
other hand, r = 50% identifies large data structures which are often
mixes of optimizable and non-optimizable parts of the heap. Even
though Jikes RVM is the platform on which Cachetor was imple-
mented and the reports were generated, the performance statistics
before and after the fixes were collected using Java Hotspot 64-bit
Server VM build 1.6.0_27. Hence, the performance improvements
we have achieved are beyond the compiler optimizations even in
a commercial JVM. In order to avoid compilation costs and exe-

cution noises, each application is run 5 times and the medians are
compared and reported.

montecarlo is a financial simulation tool included in the Java
Grande benchmark suite [2]. It uses Monte Carlo techniques to
price products derived from the price of an underlying asset. The
simulation generates 60,000 sample time series with the same mean
and fluctuation as a series of historical data. The top two alloca-
tion sites from D-Cachetor’s report are located at lines 184 and 185
of class AppDemo. These allocation sites create seed objects and
header objects, respectively, in order to construct a Task, which is
then saved into a list. After carefully inspecting the code, we find
that we are actually able to implement a singleton pattern for these
allocation sites—the list contains identical tasks, and hence, one
single instance of the task would suffice for the execution. Even
though the DCMs are relatively low because only part of the ob-
jects contains identical values, the next three allocation sites are
located inside loops and their executions create objects with com-
pletely disjoint lifetimes. To optimize, we hoist these sites out of
the loops and create a clone when required.

Many call sites reported by M-Cachetor have high CCMs (1.0).
Among the top are call sites at line 155 of method getResult

and line 104 of setInitAllTasks in the class PriceStock.
These calls return exactly the same objects every time they are exe-
cuted. In addition, the returned objects are used only as temporary
objects that carry multiple values from the callees to the callers.
We cache these objects into static fields to avoid re-invoking these
calls. Further investigation of method getResult reveals that
there is even no need for this method to create an object to hold
data. Originally the program stores all the returned data into a list
and wait to compute the final price. We eliminate the list and com-
pute the final price on the fly every time a new result is returned.
After implementing these fixes, we have seen a 98.7% reduction
in the peak memory consumption (from 507268KB to 6320KB), a
70.0% reduction in the number of garbage collection runs (from
10 to 3), a 89.2% reduction in the time spent on GC (from 461ms
to 50ms), and a 12.1% reduction in the total running time (from
12.146s to 10.678s). Each Java Grande benchmark reports an “ef-
ficiency” measurement based on a certain performance metric. For
montecarlo, the fixed version has gained a 12.5% improvement ac-
cording to its own efficiency measurement.

raytracer is a Java Grande benchmark that measures the perfor-
mance of a 3D ray tracer. The scene contains 64 spheres and is
rendered at a resolution of 500×500 pixels. Out of the top four
allocation sites reported by D-Cachetor, two sites are located in
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method shade. We inspect the code and find that objects created
at the allocation site at line 337 always contain the same data and
are discarded after the method returns. The other allocation site is
located at line 335; even though its DCM is 1, we cannot develop
a fix for it—objects created by this site are returned by method
shade, which is a recursive method. The recursion prevents us
from caching an instance of the allocation site in a field.

We additionally find that many allocation sites in the report cre-
ate large numbers of objects of type Vec, each of which stores the
results of certain computations in a method and is then returned
to the caller of the method. While the DCMs of these allocation
sites are not very high (i.e., only certain fields of the objects con-
tain identical values), we manage to reuse one Vec instance across
all these allocation sites and reset its content if necessary. We also
find that in class Sphere, objects referenced by its field Vec b

always have the same data content, because the field is completely
unused after being initialized. Thus, we remove this field from the
class. All these fixes have led to a 19.1% reduction in the running
time (from 18.595s to 15.034s), a 33.3% reduction in the number
of GC runs (15 to 10), and a 30.2% reduction in the GC time (39ms
to 27ms). The benchmark-specific “efficiency” (i.e., the number
of pixels per second) is improved by 20.3%, from 13453.95 to
16179.14. Only a 1.2% reduction is seen in the peak memory con-
sumption.

euler is a Java Grande benchmark that solves the time-dependent
Euler equations for the flow from a channel employing a struc-
tured, irregular 96×384 mesh. The top allocation site reported by
D-Cachetor is at line 158 of class Tunnel, initializing a matrix
with elements typed Statevector. This allocation site has a 1.0
DCM. After inspecting the code, we realize that immediately after
this initialization point, the element of this matrix is replaced by
another Statevector object created in method calculate-

Damping. Hence, we can safely remove this allocation site. The
matrix element replacement leads us to inspect the method
calculateDamping. In this method, three Statevector ob-
jects are used as value containers for computations and die after
the method returns. While these three allocations sites do not have
very high DCMs (i.e., only around 0.57), we come up with a fix by
creating three static fields, one for each allocation site to cache its
instance. A similar fix is employed for three Vector2 objects in
method calculateDummyCells.

The report of M-Cachetor reveals more optimization opportuni-
ties. Among the top call sites are those that invoke method svect
of class Statevector. svect returns a Statevector object
that may be saved in the matrix created in class Tunnelmentioned
above. These calls are located inside a loop, and thus they create
large numbers of objects at run time. We develop a fix that makes
svect return one single Statevector object and create a clone
only when it receives different values or is assigned to the matrix.
Altogether these fixes have reduced the running time from 5.344s
to 4.246s (20.5%), number of GC runs from 5 to 3 (40.0%) and
the GC time from 46ms to 25ms (44.8%). No significant reduc-
tion is seen in the peak memory consumption. There is a 27.9%
“efficiency” improvement after the fixes are implemented.

bloat is a Java byte-code optimizer and analysis tool. The re-
port of D-Cachetor points to the heavy use of the visitor pattern—
many of the top allocation sites are related to visitor classes such
as TreeVisitor and ComponentVisitor. bloat declares
a visitor class for each program entity and creates an object of
the class to visit each entity object. We find that these visitor ob-
jects contain the same auxiliary data and their lifetimes are com-
pletely disjoint. To optimize, we manually implement the single-
ton pattern for each visitor class and use a single visitor object

to visit all program entities of the same type. Cachetor also re-
ports that many allocation sites frequently create constant arrays,
such as those at lines 1365 and 1400 of class Tree, lines 1658
and 1644 of class CodeGenerator, lines 330 and 336 of class
TypeInferenceVisitor, and line 131 of class SSAGraph.
These arrays contain offset values and serve no other purposes.
Hence, we can safely cache these arrays into static fields. The
running time and the peak memory consumption are reduced by
13.1% (from 26239ms to 22809ms) and 12.6% (from 177286KB
to 154933KB), respectively. No significant reduction is seen in the
number of GC runs and total GC time.

xalan is an XSLT processor for transforming XML documents.
The top allocation sites on D-Cachetor’s report are at lines 191
and 440 of class NodeSequence, where the content of a newly-
created NodeVector object is only used to initialize another ob-
ject. Lines 862 and 865 of class XPathContext create Node-
Vector objects whose content are always the same are also among
the top results. We fix the problems by using static fields to cache
the instances of NodeVector created by these allocation sites.
The same fix can be applied to the allocation site at line 721 of
class SAX2DTM. We also inspect call sites that have high CCMs
from M-Cachetor’s report. As these calls have very simple inputs,
we perform lightweight profiling to understand what the frequent
inputs and outputs are for them. Then we cache these frequent in-
puts and outputs into a HashMap; upon the execution of the call
site, we first query the HashMap to see if the input of the call is in
the map. If it is, the result is directly retrieved and used; otherwise,
the call still needs to be executed. These fixes have resulted in a
5.2% reduction in the running time (from 8321ms to 7889ms). No
reduction is seen in the memory consumption.

Table 2: Numbers of false positives identified in the reports of

D-Cachetor and M-Cachetor.
Program D-Cachetor M-Cachetor

bloat 1 4
xalan 4 3
euler 1 (6) 7 (19)
montecarlo 2 (9) 6 (17)
raytracer 3 (13) 4 (17)

5.3 False Positives
Table 2 lists the numbers of false positives identified among the

top 20 allocations sites in the reports of D-Cachetor and M-Cachetor.
If the total number of reported allocation/call sites is smaller than
20, that number is shown in parentheses. An allocation/call site is
classified as a false positive if either (a) it is clearly not cacheable
or (b) we could not develop a fix to cache the data. Based on
our studies, we have identified the following four sources of false
positives. The first source is the handling of floating point values.
Casting floating point values into integers before applying the hash
function causes Cachetor to mistakenly classify different run-time
values into the same slot. Future work may develop a lossless en-
coding for floating point values, using, for example, the IEEE 754
floating-point “single format” bit layout [1].

The second source of false positives is the context-sensitive re-
porting of allocation sites. Associating calling contexts with in-
structions is extremely important for Cachetor to distinguish ob-
jects based on their logical data structures. However, reporting
cacheability of allocation sites separately for different contexts makes
it difficult for the developer to understand and fix problems. This is
the case especially if the DCMs of an allocation site differ signifi-
cantly under different contexts. Future work may address this prob-
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lem by recording richer calling context information which would
allow the user to recover a context from the encoded number.

The third source is the missing of the actual values that are fre-
quently produced in our analysis reports. For example, M-Cachetor
reports call sites with high CCMs, but fails to provide information
regarding what the frequent inputs and outputs are for the call sites.
The developer has to do additional profiling to understand these
values in order to develop fixes. While some extra effort is needed
to find such frequent input and output values, this profiling is very
lightweight and can be quickly implemented. We implement such
profiling for almost every call site we inspect, and the burden of
time is negligible.

Eventually, value hashing may give rise to false positives. In
D-Cachetor’s report for montecarlo, we have found a few alloca-
tion sites that have high DCMs but do not really contain identical
values. One example is an allocation site that creates seed objects.
Our code inspection reveals that a seed object is created based on
a sequence of numbers, each of which is a multiple of 11. This
hard-coded number 11 is coincidentally the same as the value of
k we chose, causing instruction instances producing different val-
ues to be mapped into the same slot. However, hashing-induced
false positives are not common and montecarlo is the only program
where such misclassification was found. Future work may alleviate
the problem by comparing the reports generated under different ks,
and selecting only the common (top) allocation sites.

6. RELATED WORK
Software bloat analysis Dufour et al. propose dynamic met-

rics for Java [12], which provide insights by quantifying runtime
bloat. Mitchell et al. [25] structure behavior according to the flow
of information, though using a manual technique. Their aim is to
allow programmers to place judgments on whether certain classes
of computations are excessive. Their follow-up work [24] intro-
duces a way to find data structures that consume excessive amounts
of memory. Work by Dufour et al. finds excessive use of tempo-
rary data structures [13, 14] and summarizes the shape of these
structures. In contrast to the purely dynamic approximation intro-
duced in our work, they employ a blended escape analysis, which
applies static analysis to a region of dynamically collected calling
structure with observed performance problem. By approximating
object effective lifetimes, the analysis has been shown to be useful
in classifying the usage of newly created objects in the problematic
program region.

Object Equality Profiling (OEP) [22] is a run-time technique that
discovers opportunities for replacing a set of equivalent object in-
stances with a single representative object to save space. JOLT [30]
is a VM-based tool that uses a new metric to quantify object churn

and identify regions that make heavy use of temporary objects, in
order to guide aggressive method inlining. Work by Xu et al. [35,
36, 37, 38, 34] finds copy- and container-related inefficiencies. Jin
et al. from [17] studies performance bugs in real-world software
systems. These bugs are analyzed to extract efficiency rules, which
are then applied to detect problems in other applications. Recent
work by Nistor et al. [26] detects performance problems using sim-
ilar memory-access patterns. Xu [33] proposes a technique to find
reusable data structures. The technique gives a three-level reusabil-
ity definition, and encodes instances, shapes, and data content of
run-time data structures to find optimization opportunities. Unlike
all the existing work on performance problem detection, Cachetor
is the first attempt to use an abstracted dynamic dependence graph
to find caching opportunities.

Control- and data-based profiling Profiling techniques have
been proposed for various optimization and software engineering

tasks: These techniques include dynamic dependence profiles [4],
control flow profiles [6], and value profiles [10]. Research from [20,
45] studies the compressed representations of control flow traces.
Value predictors [9] are proposed to compress value profiles, which
can be used to perform various kinds of tasks such as code special-
ization [10], data compression [46], value encoding [39] and value
speculation [21]. Research from [11] proposes a technique to com-
press an address profile, which is used to help prefetch data [15]
and to find cache conscious data layouts [28]. Zhang and Gupta
propose whole execution traces [42] that include complete data in-
formation of an execution, to enable the mining of behavior that re-
quires understanding of relationships among various profiles. Am-
mons et al. [5] develops a dynamic analysis tool to explore calling
context trees in order to find performance bottlenecks. Srinivas
et al. [31] use a dynamic analysis technique that identifies impor-
tant program components, also by inspecting calling context trees.
Chameleon [29] is a dynamic analysis tool that profiles container
behaviors to provide advice as to the choices of appropriate con-
tainers. The work in [27] proposes object ownership profiling to
detect memory leaks in Java programs.

Dynamic dependence analysis and slicing Since first being
proposed by Korel and Laski [18], dynamic slicing has inspired a
large body of work on efficiently computing slices and on applica-
tions to a variety of software engineering tasks. A general descrip-
tion of slicing technology and challenges can be found in Tip’s sur-
vey [32] and Krinke’s thesis [19]. The work by Zhang et al. [40,
41, 43] has considerably improved the state of the art in dynamic
slicing. The work from [44] is more related to our work in that the
proposed event-based slicing approach uses pre-defined events to
merge dependence graph nodes. However, this work targets auto-
mated program debugging, whereas the goal of the proposed work
is to find caching opportunities to improve performance.

7. CONCLUSIONS
This paper presents a novel dynamic analysis tool, called Ca-

chetor, that profiles a program to help the developer find caching
opportunities for improved performance. Cachetor contains three
different cacheable data detectors: I-Cachetor, D-Cachetor, and M-
Cachetor, that find cacheable data at the instruction-, data-structure-
, and call-site-level, respectively. To make Cachetor scale to real-
world programs, we develop a novel dynamic technique that com-
bines value profiling and dynamic dependence analysis in a novel
way so that distinct values are used to abstract instruction instances.
Based on the abstracted dependence graph, we develop three of-
fline analyses to compute cacheability measurements that will be
used by the three detectors to generate analysis report. We have
implemented Cachetor on JikesRVM and evaluated it on a set of 14
large-scale, real-world applications. Our experimental results show
that the overhead of Cachetor is large but acceptable, and large op-
timization opportunities can be quickly found by inspecting its re-
ports.
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